

'Raising the alert on critical transitions in the Amazon'

Vulnerability of the Amazon ecosystem services to climate change and deforestation

What is important in the Amazon?

 Identify the ecosystem services most important to stakeholders in the Amazon Basin and beyond.

CMIP5 Earth System models

Ensemble of models example for Sept-Nov.

Brown: agreement on drying Blue: agreement on wetting

Kay et al, in prep.

Lower Madeira Basin – Mean discharges

In most projections, reductions in the discharges.

Deforestation increases the variability and further reduces the dry season discharges.

Tomassella et al, submitted

Socio-economic drivers

- Evaluate policy
 - First overview of Brazilian and international policies made
- Improve scenarios (talk Kok):

What do complex, coupled models show?

Results not yet available, tendency for little/no dieback under rising CO₂

Huntingford et al, 2013

Tools for policy

- Develop a proposal ('Blue-print') for an early warning system for imminent tipping points
- Policy analysis (National, International (talk Frieden))

Early Warning System

What to warn about?

- Degradation of ecosystem services in what time scales (years – decades) ?
- Not only critical transitions, but also gradual change?
- Which changes are the biggest concerns of stakeholders?
- How do we translate large-scale change into local impact?
- Are there likely policy options in response?

What kind of thresholds can we warn for?

- IMPACT threshold: Critical change occurs
- · REGIONAL threshold: Critical change is unavoidable
- MITIGATION threshold: Existing policies are not sufficient any more to avoid critical change

Monitoring system

- WHICH properties of the Amazon would be important to monitor as indicators?
 - Existing monitoring
 - Invest in key new ones
- HOW would we detect imminent change from these?
 - Advanced statistical techniques looking at variability and 'slowing down'
 - Analyse model output as guidance

Critical indicators

- The basis of such a system is long-term monitoring of critical indicators
- These indicators should be quantities that are relatively accessible, and easy to monitor at high temporal and/or spatial resolution.
- should represent the variability of the Amazon ecosystem services and other important tipping phenomena
- => their behaviour near critical transitions should reliably **point to imminent change** in the state of that particular ecosystem service.

List of possible variables to monitor

- Sea Surface Temperature (SST) indicator of global-scale change
- Precipitation (patterns, quantity, dry season length...) primary driver as well as an ecosystem service that can be affected
- Climate modes (ENSO, Atlantic Oscillations, etc) often correlated indicators of high-impact changes or episodes in Amazonia
- River flow and discharge
- Evapotranspiration prime driver of recycling

List of possible variables to monitor

- overall vegetation productivity changes –
 [CO2] over the tropical belt + anthropogenic emissions
- Biomass remote sensing (eg S-band Radar) and well-referenced growth bands in forest plots across the basin
- Water use efficiency from tree-ring & gas exchange monitoring
- Remote sensing indices (NDVI, EVI)

List of possible variables to monitor

- Fires (remote sensing and in-situ observations) – not simply occurrence or area, but also fire effects (e.g. type of vegetation affected and recovery of previously burned areas
- Economic indicators, such as the GDP of the region, transport, trade and migration patterns
- Exposure and Vulnerability (?)

Which institution can do this?

- · Aim:
 - Manage critical monitoring systems
 - Re-analyse and re-run coupled forecasts
 - issue regular 'state of the Amazon' reports
- CEMADEN Brazil centre for monitoring and forecasting of natural disasters
 Cemaden
 - Federal institute
 - Runs several intensive monitoring systems
 - Now short-term forecasting
 - Could add long-range forecasting branch
- An independent NGO?
 - More difficult to obtain information and run monitoring
 - Could more easily go against government policy

AMAZALERT final products

- More insight into the integral functioning of the Amazon
- Quantified uncertainty on the risk of dieback or other tipping points
- Point to way forward in further reducing uncertainty, in particular CO₂ effects
- · A 'blue-print' for an Early Warning System
- Evaluation of national and international policies

Take-home messages

- AMAZALERT: work in progress
- Early model results and data suggest high uncertainty on Amazon drying, dieback or wetting and resilience
- Most important factors in uncertainty:
 - Global climate change
 - Deforestation rates
 - Temperature dependence
 - CO₂ dependence!
- · Early warning specified and refined
- What about impact of European policies, trade and investments

