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Abbreviations and acronyms 
 

AR4/5 IPCC Assessment Report 4/5 

CO2 Carbon dioxide 

CASA  NASA Carnegie-Ames-Stanford-Approach project 

CDF  Cumulative distribution function 

CMIP3/5  Coupled Model Intercomparison Project phase 3/5 

CRU Climatic Research Unit, University of East Anglia UK 

DGVM Dynamics Global Vegetation Model 

DJF December-January-February 

ENSO El Niño-Southern Oscillation 

ET Evapotranspiration 

FACE  Free-Air CO2 Enrichment  

FLUXNET  Programme for the coordination of measurements from flux tower sites 

GCM Global Climate Model / General Circulation Model 

GHG Greenhouse Gas 

GPCC  Global Precipitation Climatology Centre 

HadCM3/(L)C  Hadley Centre Coupled Model version 3/(Low ocean resolution) Carbon 

cycle version  

HadGEM2-ES  Met Office Hadley Centre’s Global Environmental Model version 2 Earth 

System configuration 

IAM Integrated Assessment Model 

Inland  Brazilian Integrated Land Surface Processes Model 

INPE Instituto Nacional de Pesquisas Espaciais, Brazilian National Institute for 

Space Research 

IPCC  Intergovernmental Panel on Climate Change 

IPSL Institut Pierre Simon Laplace, France 

IPSL-CM5A  Fifth generation climate model of IPSL 

ITCZ Inter-Tropical Convergence Zone 

JJA June-July-August 

LAI Leaf Area Index 

LBA Large Scale Biosphere-Atmosphere Experiment in Amazonia 

LUC Land Use Change 

LuccME  INPE’s Earth System Science Center Land Use and Cover Change 

modelling system  

LUCID Land-Use and Climate, IDentification of robust impacts project 

LUH Land Use Harmonization data set 

MODIS  NASA Moderate Resolution Imaging Spectroradiometer 

MOSES  Met Office Surface Exchange Scheme  

NASA National Aeronautics and Space Administration, US 

NPP Net Primary Productivity 

RAINFOR Amazon Forest Inventory Network 

RCP  Representative Concentration Pathway 

RD Runoff and drainage 

SAM  South American Monsoon  

SON September-October-November 

SRES Special Report on Emissions Scenarios 

SSP Shared Socioeconomic Pathways 

SST Sea Surface Temperature 

TRIFFID Met Office vegetation dynamics model 
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Executive Summary 
 

The Amazon forest, like many other forests across the globe, is subject to increasing pressure 

from multiple anthropogenic and natural sources, including deforestation, extreme climate 

events and climate change, and fire. There has been rising concern over the future viability of 

the Amazon forest system, together with a growing recognition of the ecosystem services that 

it provides. This has prompted research into the potential nature of environmental change and 

response of the Amazon forest, within the context of other pressures.  

 

The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) 

placed medium confidence on the statement that “Replacement of tropical forest by savannas 

is expected in eastern Amazonia…due to synergistic effects of both land-use and climate 

changes” (Chapter 13, Working Group II, Magrin et al. 2007). At that time, the studies 

investigating dieback of the Amazon were limited in number. No comprehensive assessment 

of likelihood was available and results were relatively isolated. As more model data has 

become available, it has become possible to put earlier results into the context of other 

projections of change. 

 

Here, we present an assessment of the likelihood of Amazon forest collapse. It is based on 

current best understanding of how anthropogenically-driven change in the Earth system may 

evolve and interact with the Amazon forest, drawing on novel AMAZALERT work and the 

wider body of Amazon research.  

 

This report presents a range of different types of information relating to the likelihood of 

Amazon dieback. Current climate-vegetation models do not have the sophistication and 

accuracy required to produce a fully quantitative probabilistic assessment for such an event 

and so this assessment relies on semi-quantitative and qualitative results based on the 

available imperfect set of model simulations. A range of simulated forest responses are given, 

but also ranges of the drivers of forest change. The latter has value, as while not directly 

quantifying forest change, they may be more reliably simulated than the final forest response. 

An expert elicitation was also carried out as an alternative view on risk. Therefore this report 

presents different levels of information, both quantitative and qualitative, which overall give a 

qualitative picture of risk. This can be updated as knowledge increases and more information 

becomes available and moreover, it can be used to help identify and prioritize further 

scientific developments.  

Dieback of the Amazon 

One of the most well-known potential impacts of a changing global climate is the catastrophic 

dieback of the Amazon forest, as simulated first (White et al. 1999) in a Dynamic Global 

Vegetation Model (DGVM) and then by the Met Office Hadley Centre’s HadCM3LC coupled 

climate carbon cycle model (Cox et al. 2000) over a decade ago. In addition, the existence of 

forest/savanna bistable states in tropical South America has been proposed as possible 

(Oyama and Nobre 2003, Staver et al. 2011, Hoffmann et al. 2012). Dieback of the Amazon 

forest would be high impact, but it is highly uncertain. Subsequent investigation has found the 

Cox et al. (2000) result to be atypical in the context of other complex models (Global Climate 

Models (GCMs)/DGVMs), including an ensemble of versions of the same model and the next 

generation Met Office Hadley Centre model HadGEM2-ES (Good et al. 2013).  

 

In this report, dieback likelihood is explored in terms of both transient (initial response) and 

committed vegetation response to climate change, which represents the potential long term 

change in the forest that is yet to be realised due to lags in processes within the Earth system 

(Figure ES1). The difference between transient and 'committed' changes found by 

Huntingford et al. (2013) and Boulton et al. (in prep.) demonstrate lags in forest response to 
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climate change, with potentially greater losses to be realised beyond the transient response. It 

implies a degree of 'temporary resilience'. This could provide an opportunity for rapid 

mitigation action to reduce the likelihood of dieback. This depends on the timescales of forest 

response to climate change. It may be that model simulated time scales are biased due to 

missing mortality processes such as drought or fire. Temporary resilience may thus depend on 

the return period of extreme drought/fire seasons. 

 

Modelling drivers of critical change 

 

Global change: Different ‘pathways’ allow alternative scenarios of emissions to be explored, 

most recently through CMIP5 (Coupled Model Intercomparison Project phase 5). However, 

owing to great uncertainty in the terrestrial carbon cycle feedback, there is likewise great 

uncertainty in the transformation of emissions into atmospheric concentrations, something 

that has not received much attention to date. 

 

Carbon dioxide (CO2): CO2 fertilization confers significant benefits to Amazon forest carbon 

uptake and increased carbon storage in the models, but this process is a key uncertainty 

marked by a lack of understanding of how this operates in tropical vegetation and in 

conjunction with other nutrient and radiation availability. The planned Amazon FACE (Free-

Air CO2 Enrichment) experiments could increase understanding and reduce uncertainty in this 

area. 

 

Temperature: Temperature increase is a common feature of climate projections, and 

considered alone has a negative effect on forest health. However, poorly-represented 

temperature dependency of respiration and photosynthesis is likely to make most if not all 

models too sensitive to high temperatures. Ongoing observational work, including through 

AMAZALERT, should help to develop better model representation of this process. 

 

Drought and dry season characteristics: Droughts such as 2005 and 2010 as well as imposed 

drought experiments have demonstrated that the forest is sensitive to these conditions. The 

Figure ES1. Changes in number of grid boxes containing Amazon forest (broadleaf tree fraction 

> 0.4 within the region 40°W-70°W, 15°S-5°N) in a ‘perturbed parameter’ ensemble of the 

coupled climate-carbon cycle model HadCM3C. (a) Time series of transient changes for each 

individual member of the ensemble. (b) Box and whisker plots for each scenario showing the 

median, inter-quartile range and minimum and maximum values (excluding outliers, black 

circles). 
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mechanisms of response to drought appear to be different than in current models, which is in 

part due to missing processes such as direct drought- and fire-driven mortality.  

 

Observations suggest that in the southern part of Amazonia at least, the dry season may be 

lengthening. This is known to be important to the forest health in terms of water stress and 

fire incidence. Although there is still a wide range in projections of precipitation over 

Amazonia, the latest multi-model ensemble (CMIP5) displays greater agreement in 

projections for a deepening and lengthening of the dry season in the future. This could be 

related to differential heating of the northern and southern hemispheres, with dry season 

rainfall negatively associated with tropical north Atlantic SSTs.  

 

It may be possible to reduce uncertainty in rainfall change using observation-based 

constrained projections. Although there is uncertainty in the magnitude and even the direction 

of change in annual rainfall, results presented in this report support the tendency of the GCMs 

towards a strengthened Amazon dry season. The 'diagnostic' projections and the observed past 

trends indicate that the model democracy approach (ensemble mean) would likely 

underestimate the amplitude of the projected Amazon dry season lengthening, which may 

have implications for forest viability. Further analyses are needed to shed light on the spatial 

detail of constrained projections to evaluate whether the regions affected are vulnerable or 

not.  

 

There are missing or partially represented processes in models, and hence uncertainty is wider 

than that encompassed by CMIP and other ensembles. Furthermore, there is inaccurate 

representation of other processes such as drought phenology and the onset of the wet season, 

as well as a widespread dry bias in the ensemble model climatology, which requires further 

model development to address. 

 

Land use: Land use (LU) and climate change interaction is still poorly understood, but 

improved scenarios of land use provide the opportunity to investigate the combined effects. 

One of a suite of new LU scenarios (to 2050) developed within AMAZALERT has been used 

to assess the effects of the new scenario in the Amazon basin relative to the standard CMIP5 

simulation. The new experiments used a standard CMIP5 scenario (up to 2050) of greenhouse 

gas concentrations and LU outside the Amazon basin, but imposed the new LU within the 

basin. Results suggest a modification to the hydrological cycle, with significant reductions in 

both evapotranspiration and precipitation in the new LU experiment relative to the CMIP5 

simulation (Figure ES2). Effects of these LU-induced climate changes on the remaining land 

cover could be tested in a DGVM. 
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Fire: Fire is a critical process that is still missing in most complex models, in particular so-

called land-use fires that involve the combination of a climate-induced high fire risk, forest 

fragmentation and human drivers of deforestation and pasture formation. Recent 

improvements to INPE’s Inland model include a new scheme for estimating the impacts of 

fires on vegetation dynamics. It estimates that the impacts of climate change in Amazonia 

increase when effects of land use changes and fire are considered. The most important 

changes will potentially occur in the east/north-east and south of the Amazon, with an 

increase in surface temperature, and decrease in precipitation and evapotranspiration. Dry 

season length is expected to increase, and a reduction of upper-canopy biomass and increase 

in lower-canopy biomass is related to an increase of the biomass in grasses and a replacement 

of tropical forest by seasonal forest and/or savanna. 

 

Observed and modelled indicators of change 

Indicators of forest health developed from observed relationships that can also be modelled 

provide a crucial link in the investigation of the forest response to projected future change and 

in assessing the future viability of the forest.  

 

Research highlighted here presents a framework for achieving this, and provides a worked 

example. However, this approach is designed to allow indicators to be updated as 

Figure ES2. Amazon basin-average times-series of annual precipitation (top), evapotranspiration 

(middle) and runoff/drainage (bottom), from standard CMIP5 simulations (black) and including a 

new scenario of Amazon LU (red). The ensemble and 5-year moving average is indicated as thick 

lines. The maps illustrate, for each variable,  the present-day (1980-1995) climatology (centre-left), 

and the long term change driven by greenhouse gases (centre-right) and land-use (right). Marks 

indicate the anomalies that are statistically significant (p < 0.05). 
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improvements are made. An essential part of this work lies in gaining more in-depth 

knowledge of observational products, how these relate to forest health, and then 

understanding how to obtain or develop comparable indicators in the models. Utilizing 

information obtained during real-world events that are stressful for the forest provides a test 

case for determining what kind of information we can get from the models about how the 

forest responds to such an event. Finally, by relating model projections of change in 

indicators to quantities that are observable, it is more likely to motivate action. 

Subjective probability of Amazon collapse 

An expert elicitation was carried out to estimate the likelihood of critical change in the 

Amazon consistent with current scientific knowledge. The aim was to provide an alternative 

view on likelihood combining different sources of information from the literature. This was 

done because Amazonian critical change may involve processes that are not all captured by or 

are biased in current GCMs (e.g. fire, drought mortality), and have no analogue in historical 

change. An elicitation from a range of experts helps provide a balanced view of current 

knowledge. Such an assessment involves subjective choices, because of the various 

assumptions underlying each scientific study. From this, the probability of Amazon critical 

change is generally viewed by the respondents as greater than very low. Significant value is 

robustly seen in mitigation of climate change. Estimated probabilities are notably lower for 

the low global warming pathway than the high. However, a wide spread of probabilities was 

reported. Comparing our results with the original Kriegler et al. (2009) study suggests a small 

decrease in mean estimated probability of dieback.  

 

Caution is required in interpreting these results. Dieback probability is highly uncertain and 

involves many subjective choices. This is just one method of summarising our current 

understanding of this system and what this understanding lacks. Reported probabilities are 

generally higher than might be directly inferred from some GCM-based analyses. This is 

consistent with the idea that the full uncertainty is widened, e.g. by missing processes such as 

the response of fire to climate change. There may also be bias through the self-selection of 

experts towards those with more concern over the future of the forest. 

Notes and recommendations 

With more models and increased modelling capability, it has now become possible to 

determine how representative the early dieback result was of other model projections. The 

new data describe a range of uncertainty in projections of change and hence permit an 

assessment of probability, albeit in a qualitative manner. 

 

In the context of climate-vegetation modelling, it has emerged that the large regional drying 

and warming behind the dieback reported in Cox et al. (2000, 2004) is not typical of current 

models.  Huntingford et al. (2013) forced a single land-surface model by climate patterns 

from 22 GCMs. They find that of the 22 climate patterns, only one (from HadCM3) causes 

committed – or potential – ‘major biome loss’. This is consistent with probability somewhere 

between 0 and 15% (95% confidence interval assuming models are independent and equally 

likely; the range is a result of the small sample of models). The changes seen in the Cox et al. 

(2000) study are atypical even of an ensemble of different versions of the same model. As 

reported here, around 30% of that ensemble shows committed ‘dieback’ (at least 25% forest 

loss) under the high (RCP8.5) emissions scenario. The probability of climate-driven dieback 

by the end of the century is systematically lower than the probability of committed loss. 

 

Thus, results from current climate-vegetation models, taken at face value, imply that the 

probability of climate-driven dieback occurring by the end of the century is significantly less 

than the probability of it not occurring. However, missing processes and biases (known and 

potential) in these models are such that dieback is much harder to rule out than implied by 

these models alone. There are key uncertain processes, such as fire, CO2 fertilization and 



AMAZALERT  D3.4 Risk of collapse 

 

 9 

regional rainfall dynamics, which could lead to substantial changes in model projections in 

the future. Thus the probability of dieback is contentious, as illustrated by the range of 

assessments from the expert elicitation, but should not be regarded as very low. Further, the 

interactions between climate variability and change and land use change, particularly through 

fire, are likely to increase the probability of biome change, especially in regions such as the 

south and east of Amazonia that are already particularly vulnerable to these drivers of change.  

 

Any assessment of likelihood is a snapshot in time, and should be updated as understanding 

and capability increases. To facilitate a targeted approach to this, this report has highlighted 

throughout the areas that most require improvements to reduce uncertainty and to advance 

future assessments of likelihood of collapse. These make clear the need for continued 

improvements in model representation of processes on the basis of greater understanding 

developed through observations and targeted field experimentation, which in turn requires 

more and sustained observational campaigns of Amazonia. In addition, further developments 

in the modelling of multiple and interacting drivers of change will provide important insight. 
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1. Introduction 
 

The prospect of large-scale collapse of the Amazon forest ecosystem by the end of the century 

was raised through model experimentation over a decade ago as a plausible yet highly 

uncertain high-impact outcome of climate change. Monitoring systems have provided visible 

evidence of how continuing deforestation contributes directly to forest loss and degradation. 

Concern over the future of a forest subject to multiple pressures, together with a growing 

recognition of the ecosystem services provided by the Amazon, has prompted further research 

into the potential nature of environmental change and response of the forest. The irreversible 

collapse of the forest can be regarded as a critical transition and an important question is if 

anthropogenic forcing, whether that is direct, indirect, or some combination of the two, is 

likely to tip the system into another state.  

 

In some model experiments (White et al. 1999, Cox et al. 2000, Salazar et al. 2007, Sitch et 

al. 2008, Salazar et al. 2010) the Amazon basin exhibits ‘tipping point’ behaviour, which 

marks the transition of a critical threshold into a qualitatively new environmental regime 

characterized by alternative land cover. This change in state may be irreversible or effectively 

so within the time scales of interest. The possibility of bistability in climate-vegetation states 

in tropical South America has been raised, where one equilibrium state corresponds to the 

current tropical forest vegetation that covers much of the basin, and the other corresponds to 

much sparser vegetation cover or savanna (Oyama and Nobre 2003, Staver et al. 2011, 

Hoffmann et al. 2012). With a complex combination of forcing agents acting upon Amazonia, 

it is not a trivial scientific question to determine the likelihood of reaching a critical threshold 

at which point the current state could switch (perhaps abruptly) to a second state. 

 

The ecosystems of Amazonia are subject to two major driving forces of change: one is the 

regional climate response to global climate change (Nobre and Borma 2009), and the other is 

direct land use change and associated processes such as biomass burning and forest 

fragmentation. The effects of deforestation on the regional climate system could bring about 

changes significant enough to affect the viability of the remaining forest (Sampaio et al. 2007) 

in the absence of additional climate change. Hence it is possible that either of the principal 

drivers of change could lead the Amazon towards and perhaps beyond a critical threshold 

(Lenton et al. 2008), but it is more likely that a combination of these will determine the future 

of the tropical forest biome in this region. Where deforestation and global warming act 

synergistically, this could make drastic biome change in Amazonia more likely. In unusually 

dry conditions, as exemplified during the recent severe droughts of 2005 and 2010, there are 

not only direct impacts of high temperatures and water stress on the trees, but an elevated 

incidence of fire. Fire is not only more prevalent in drought conditions but it is closely related 

to human activities (such as pasture and previous deforestation). It has been proposed as the 

prime agent of change that could bring about significant biome change in Amazonia (Hutyra 

et al. 2005, Aragão et al. 2007, Hoffmann et al. 2012).  

 

The loss of the Amazon forest and its associated ecosystem services has the potential to have 

a great impact on society both local, such as through effects on basin hydrology and river 

flow (Marengo et al. 2008a, b, Tomasella et al. 2013) and remote to the region, such as 

through feedbacks on the global carbon cycle (e.g. Cox et al. 2000). Hence there is a 

requirement for an assessment of the likelihood and the predictability of this transition. 

Further, given the likely negative implications of reaching that tipping point, information 

about the trajectory and proximity of a tipping point along with knowledge of how human 

activity affects these attributes could form an important input into decision making. 
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The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) 

placed medium confidence on the statement that “Replacement of tropical forest by savannas 

is expected in eastern Amazonia…due to synergistic effects of both land-use and climate 

changes” (Chapter 13, Working Group II, Magrin et al. 2007). At that time, the studies 

investigating dieback of the Amazon were limited in number. No comprehensive assessment 

of likelihood was available and results were relatively isolated. A study by Kriegler et al. 

(2009), based on work carried out in 2006, combined and summarized some of the available 

information through the subjective assessment of probabilities based on expert opinion. 

Higher estimates of probability of dieback were generally expressed for higher emissions 

pathways, although the ranges of probability estimates were very wide, reflecting large 

uncertainty in the dieback outcome. Since then, as more model data has become available, it 

has become possible to put earlier results into the context of other projections of change. 

 

Here we present an assessment of the likelihood for the collapse of the Amazon forest to 

occur, towards supporting decision makers in taking action required to avoid such an 

outcome, and managing and adapting to changes as well as informing further scientific 

development. It is based on current best understanding of how anthropogenically-driven 

change in the Earth system may evolve and interact with the Amazon forest, drawing on the 

body of Amazon research and novel AMAZALERT work.  

 

This report presents a range of different types of information relating to the likelihood of 

Amazon dieback. Assessing this likelihood involves many subjective choices, because of the 

various assumptions underlying each scientific study. Current climate-vegetation models lack 

the sophistication and accuracy required to produce a fully quantitative probabilistic 

assessment for such an event. Therefore this report presents different levels and types of 

information, both quantitative and qualitative, which overall give a qualitative picture of risk. 

This includes semi-quantitative and qualitative results based on the available imperfect set of 

model simulations. A range of simulated forest responses are given, but also ranges of the 

drivers of forest change. The latter has value, as while not directly quantifying forest change, 

they may be more reliably simulated than the final forest response. Some real-world 

observations are also discussed, covering forest sensitivity and regional climate trends and the 

development of comparable observational/modelled indicators of forest health. An expert 

elicitation was also carried out as an alternative view on risk. Therefore this report presents 

different levels of information, both quantitative and qualitative, which overall give a 

qualitative picture of risk. This can be updated as knowledge increases and more information 

becomes available and moreover, it can be used to help identify and prioritize further 

scientific developments.  

 

2. Dieback of the Amazon 
 

In this section, we introduce some of the work that prompted investigation into Amazon 

dieback and how this was simulated to occur, put this into the context of other modelling 

studies, and consider the Amazon as a possible Earth system tipping element.  

Simulated Amazon forest dieback 

 

One of the most well-known potential impacts of a changing global climate is the catastrophic 

dieback of the Amazon forest, as simulated first (White et al. 1999) in a Dynamic Global 

Vegetation Model (DGVM) and then by the Met Office Hadley Centre’s HadCM3LC model 

(Cox et al. 2000, 2004) over a decade ago. In pioneering work, a climate model was coupled 

to a carbon cycle model including vegetation dynamics, which allowed investigation of how 

the oceanic and terrestrial ecosystems may respond to increased concentrations of greenhouse 

gases and climate change, and permitted biophysical and biochemical feedbacks. Notably, 
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direct anthropogenic land use change and fire were not represented in this model. In the 

Amazon region, climate change and feedbacks drove rapid dieback of the forest, with almost 

complete loss of trees by the end of the 21
st
 century (Figure 1). The regional signature of 

global climate change over Amazonia was characterized by severe warming and drying, and 

these climate effects on photosynthesis and respiration drove tree mortality (refer to Box 1). 

 

 

 
 

 

There were a number of reasons behind this result, which combined to give the high impact 

response in the Amazon region. First, global climate change produced more rapid warming of 

tropical north Atlantic sea surface temperatures (SSTs) and tropical east Pacific. Precipitation 

over the Amazon is sensitive to SST anomalies in both of these regions: warmer than average 

SSTs are associated with drought or rainfall deficit in parts of the Amazon. However, it is not 

just the chain of events simulated by this model: global climate change to regional climate 

change. In addition to the radiative effect of carbon dioxide (CO2) in the atmosphere as a 

greenhouse gas, it can also exert direct physiological forcing on the vegetation. Betts et al. 

(2004) found that because of increased water use efficiency of plants under increased 

atmospheric CO2 concentrations, less water was recycled back into the atmosphere via 

evapotranspiration, and hence less was available to fall again as rain. But CO2 also has a 

fertilizing effect on plants, and at least initially, the combination of this effect and the 

increased water use efficiency mitigating the effects of declining rainfall caused forest 

productivity to increase. However, in the model, the negative effects of regional climate 

change eventually overrode the positive CO2 effects on the forest and strong declines in 

Figure 1. Percentage change in forest 

cover by late 21st century compared 

with pre-industrial conditions, as 

modelled using Hadley Centre coupled 

climate-carbon model HadCM3LC 

with a ‘business as usual’ greenhouse 

gas concentration scenario. Red 

colours indicate a reduction in forest 

cover. It demonstrates the ‘dieback’ of 

the forest resulting from simulated 

warmer and drier climate in the future, 

and carbon cycle feedbacks. After Cox 

et al. (2000). 

 

Box 1: Dieback as a balance between productivity and mortality 

In several Global Climate Models (GCMs) including the Met Office Hadley Centre models, which 

run with TRIFFID vegetation dynamics, mortality is not modelled explicitly, but is rather driven 

by changing productivity. For example, under drought conditions, declining productivity is 

simulated, which then feeds into litter flux, but explicit drought-driven mortality is not 

represented. Comparison with observations indicates that models lacking a drought mortality 

mechanism respond incorrectly to imposed drought conditions (Powell et al. 2013). In addition, 

there is no representation of fire-driven mortality, which is thought to be a critical process in the 

wider northern South America Amazon to savanna region (e.g. Aragão et al. 2007, Staver et al. 

2011). 
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productivity ensued. Feedbacks on the regional and global climate followed. Loss of tree 

cover reduces latent heat loss through evapotranspiration, acting both to increase temperatures 

and reduce available rainfall. Higher surface albedo could also suppress convection and 

moisture convergence. Together, these regional feedbacks were found to contribute 

approximately 25% of the rainfall decline. A further feedback occurred through the global 

carbon cycle. Loss of trees is a loss of an important carbon sink, as well as becoming a net 

source of carbon. Both of these elements mean that the ratio of carbon in the atmosphere to 

that in store increases, although the greatest release of carbon to the atmosphere with warming 

comes from the global soils. This further enhances global to regional climate change. Cox et 

al. (2000) found that total global carbon cycle feedbacks significantly enhanced climate 

change over the 21
st
 century. Global mean temperature increases were 1.5K greater than those 

projected by the standard (non-carbon cycle) version of the model. 

 

A number of interacting factors came together in this model simulation to produce the 

extreme dieback of the Amazon forest, some of which worked against each other in terms of 

effect on forest health, and some of which reinforced and enhanced the reduction in forest 

productivity. However, once forest decline had begun, feedbacks on the climate – either 

directly through land surface interactions or via the global carbon cycle – tended to promote 

warmer drier conditions and further forest loss.  

 

This and the preceding DGVM study were very important in the field of Amazon research as 

they opened up the possibility of this high-impact consequence of climate change, quite apart 

from any direct deforestation. This startling potential prospect has been among the 

motivations for investigating it further, using a variety of existing and emerging tools and 

models, and using observations to enhance understanding and measure and monitor change. 

 

Subsequent modelling of dieback in complex models 

 

The authors in the studies above were careful to point out that while this result could be 

regarded as plausible, it was also highly uncertain. Uncertainties are inherent in model 

projections of change and there are established ways of addressing some of these. On climate 

change time scales, uncertainties are generally understood to arise from the future emissions 

pathway, dependent on a range of socio-economic factors, how those emissions translate into 

concentrations in the atmosphere, and also in model structure and process representation. 

While we do not know how emissions will evolve, we can examine the effects of forcing 

GCMs according to different emissions/concentration scenarios such as SRES (IPCC Special 

Report on Emissions Scenarios, Nakićenović et al. 2000) or RCP (Representative 

Concentration Pathways, van Vuuren et al. 2011a). Furthermore, multi-model ensembles 

provide an important opportunity to explore the range of outcomes that different model 

formulations bring. Another source of uncertainty in GCM projections is in parameter 

settings. In ‘perturbed physics ensembles’ (Murphy et al. 2004, Lambert et al. 2013), 

parameters are perturbed within their plausible, expert-defined ranges. So, even within a 

single model structure, there can be a range of outcomes depending on the parameter 

combinations.  

 

The Coupled Model Intercomparison Project (CMIP) has provided a process for bringing 

together simulations from modelling groups around the world into coordinated and 

comparable multi-model ensembles. The third version of the programme, CMIP3, fed into the 

IPCC’s Fourth Assessment Report (IPCC, 2007) and the recently completed CMIP5 has 

formed the basis of the Fifth Assessment Report (IPCC, 2013). HadCM3LC, which gave us 

the dieback results, was a version of HadCM3, one of the CMIP3 generation of models, and 

an important step was to put this result into the context of the other CMIP3 models. These 
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GCMs were not able to explicitly model changing vegetation, but other means have been used 

to assess the potential future of the forest using the CMIP data.  

 

Certain climate characteristics and changes have been highlighted as important to the future 

of the Amazon forest: higher temperatures and reduced moisture. In HadCM3, there is strong 

warming and drying over Amazonia, which is more pronounced in the carbon cycle and 

vegetation feedbacks version of the model (HadCM3LC). Warming is a feature common to 

the CMIP3 ensemble, but HadCM3 is known to have high climate sensitivity: in other words, 

to respond to a given forcing with a greater temperature increase than in many other models. 

Over the basin as a whole, rainfall response in the CMIP3 ensemble exhibits a large spread 

that spans zero, meaning that some models project drier conditions while others indicate a 

wetter future. These results suggest that the broad pattern of climate changes simulated by 

HadCM3 were at the extreme end of the CMIP3 ensemble, and that in the key variable 

precipitation, there is large uncertainty in both the magnitude and the direction of change.  

 

As outlined in AMAZALERT Deliverable 3.1, the broad patterns of climate change projected 

by the CMIP5 ensemble are similar to those of CMIP3, and show that impacts tend to 

increase under higher concentration scenarios. Temperature is projected to rise over South 

America, with regional maximum warming occurring over Amazonia. The changes in rainfall 

projected by the ensemble are mixed over the Amazon basin, and vary by season. However, 

there is generally more agreement on drying in the eastern basin, particularly in the June to 

November period, with wetter conditions projected by the majority of models in the western 

basin particularly in December to May. But as in CMIP3, there is a spread in the model 

projections that spans zero, and over the Amazon basin itself, there is no clear scenario 

dependency apart from an increase in spread of response in RCP8.5 over 4.5 and 2.6. The 

newer generation Hadley Centre model HadGEM2-ES is similarly placed within the CMIP5 

ensemble as HadCM3 was within CMIP3, with relatively greater warming and drying than 

much of the ensemble, although the projected changes in precipitation are not as extreme as 

with HadCM3 (Good et al. 2013). However, a strong warming and drying signal in 

HadGEM2-ES does not correspond to Amazon dieback. In idealized experiments where CO2 

concentrations increase by 1% per year over 140 years, the familiar dieback of the Amazon 

occurs in HadCM3LC while minimal loss takes place in HadGEM2-ES (Good et al. 2013).  In 

the RCPs, changes in forest extent are dominated by direct anthropogenic land use change 

(Betts et al. 2013). The sources of the discrepancy are investigated by Good et al. (2013), who 

find that differences between dry season characteristics play an important role, as well as 

model climatology, projections of regional climate, and forest response to climate and CO2. In 

another large model ensemble of versions of HadSM3 (slab ocean), the standard deviation of 

Amazon basin NPP changes under doubled CO2 climate was around the same or – in north-

eastern parts of the basin – even more than the average change, indicating a highly uncertain 

response, even in this single model (Hemming et al. 2013). More discussion of modelled 

environmental drivers of forest health, including seasonal characteristics, follows in Section 

3. 

 

In some recent work carried out in a collaboration between Exeter University and 

AMAZALERT researchers, further understanding on the risk of dieback through declining 

productivity has been gained through an analysis of a perturbed parameter coupled climate-

carbon cycle model ensemble, HadCM3C (Boulton et al. in prep.). This was based on the 

HadCM3C model structure that simulates Amazon dieback in its standard form. Both 

atmospheric and land-surface parameters were perturbed (Lambert et al. 2013). Each model 

version is run under three emissions scenarios (SRES A1B, RCP 2.6 and RCP 8.5) to 2100. 

 

Dieback likelihood is explored in terms of both transient and committed vegetation response. 

The transient response is determined by the change in forest coverage at the end of the 21
st
 

century.  The committed response (Jones et al. 2009) is the eventual change in forest coverage 

that would occur if the forest was allowed to adjust fully to the climate conditions at the end 
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of the 21
st
 century. The transient and committed changes are different because of lags in forest 

response to climate changes. These represent the potential long term change in the forest 

which is yet to be realized due to lags in the vegetation. A prediction of the committed 

response is made by a novel use of the Good et al. (2011) dry-season resilience (DSR) 

technique.  

 
There is a large spread in the transient responses of the forest by 2100 (Figure 2), with 

uncertainty increasing as the emission scenarios get stronger. The general picture from this 

ensemble of HadCM3 versions is broadly consistent with estimates based on CMIP3 (SRES) 

climate changes. And the large dieback seen in the standard version of HadCM3 is not typical 

of other CMIP3 models (Huntingford et al. 2013). The mean response of the forest for both 

RCP 2.6 and A1B scenarios is for the forest to remain unchanged, with a greater tendency for 

dieback seen in A1B. RCP 8.5 has a mean response of slight forest loss but a lot more of a 

spread in results. The dieback observed in the standard configuration of HadCM3 of ~60% 

(Cox et al. 2000) appears to simulate dieback that is higher than the typical response when the 

parameters are perturbed. 

 

Figure 2. Transient changes in number of grid boxes containing Amazon forest (BL fraction > 

0.4 within the region 40°W-70°W, 15°S-5°N) in the HadCM3C perturbed parameter ensemble. 

(a) Time series of this transient changes for each member of the ensemble. (b) Box and whisker 

plots for each scenario showing the median, inter-quartile range and minimum and maximum 

values (excluding outliers, black circles). 
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The transient response and the prediction of committed loss for each scenario can be 

compared using cumulative distribution function (CDF) plots (Figure 3). The predictions 

suggest that especially under RCP 2.6 and A1B scenarios, there is high forest loss that is 

potentially yet to be realized in the transient response. This is also true of RCP 8.5, but the 

difference between the transient and predicted committed responses is less than in the other 

scenarios. As well as uncertainty increasing as emissions scenarios get stronger, it also 

increases from the transient response to the predicted committed response. Interestingly, 

although proportions are greater in the higher scenarios, over 40% of the ensemble members 

show at least predicted committed 'loss' (> 5%) under RCP 2.6, which is an aggressive 

mitigation scenario in which radiative forcing peaks and declines before 2100.  

 

As well as fully coupled models, offline vegetation models provide an important way to 

investigate the potential effects on the Amazon forest of the range of projected climate 

changes. By using the GCM output to drive offline vegetation models, forest change can be 

modelled explicitly. In addition, in combination with observation-driven modelling, DGVMs 

are highly valuable in developing understanding and modelling of key vegetation processes 

that can in time be brought into fully coupled models.  

 

Effects on the forest of uncertainty in climate model projections can be explored by forcing a 

single DGVM with data from a range of GCMs; DGVM model uncertainty can be sampled by 

combining a single GCM with more than one DGVM. Under the ongoing Inter-Sectoral 

Impacts Model Intercomparison Project (ISI-MIP; Warszawski et al. 2013), there is scope to 

more easily sample uncertainty in both DGVMs and GCMs. Existing studies give a range of 

Figure 3. Summary CDFs of the Amazon rainforest fractional changes in grid boxes deemed forest 

for ensemble members of HadCM3C. Transient responses observed by 2100 for scenarios (a) RCP 

2.6, (b) A1B and (c) RCP 8.5 are shown above predicted committed responses using the DSR 

method for (d) RCP 2.6, (e) A1B and (f) RCP 8.5. Coloured regions show proportion of models 

which show ‘Dieback’ (red, <-25%), ‘Loss’ (orange, >-25%<-5%), ‘No Change’ (white, >-5% 

<5%) and ‘Growth’ (green, >5%). 



AMAZALERT  D3.4 Risk of collapse 

 

 17 

results for the Amazon forest. Some allow the possibility of loss of forest, to a greater or 

lesser extent, with reductions in rainfall or lengthening dry season proposed as driving the 

reduction in vegetation carbon or transition in biome in parts of the Amazon (Sitch et al. 

2008, Salazar et al. 2007, Cook et al. 2012) while a recent study (Huntingford et al. 2013) 

finds evidence for resilience of tropical forests to CO2-induced climate change. The latter 

study presents tropical biomass projections by MOSES-TRIFFID driven by data based on 22 

CMIP3 models. It finds that the HadCM3-driven dieback by 2100 is unique in the context of 

other models, although several others begin to lose vegetation carbon towards the end of the 

21
st
 century. However, it also puts these in the context of other available model runs using 

versions of HadCM3C (see above) and a DGVM intercomparison, and finds that the largest 

uncertainties in future Amazon vegetation carbon come from the plant processes as 

represented by the different DGVMs. Another study suggests that the uncertainty associated 

with CO2 effects is greater than that associated with precipitation change (Rammig et al. 

2010). In a systematic comparison of vegetation sensitivity to different environmental drivers, 

Galbraith et al. (2010) found that different DGVMs can produce dieback for different reasons. 

The effect of modifying DVGM parameter settings within a single model has been 

investigated (Poulter et al. 2010) and some recent work has placed emphasis on the 

importance of dynamic and demographic processes (carbon residence time), finding that this 

dominates over productivity in the uncertainty of vegetation response to climate and CO2 

changes (Friend et al. 2014). Evidently, significant uncertainties remain in the modelling of 

vegetation processes as well as in the regional climate changes. 

 

Critical transitions in simple models 

 

While complex models provide the most sophisticated means for making projections of 

climate and ecosystem response in an interacting Earth system, simple models form an 

important tool in investigating important processes and system behaviour. Stripping out 

complexity confers a number of benefits. First, potentially important drivers of change can be 

tested in clean experiments that isolate particular elements of interest. Secondly, because of 

their relative simplicity, model equations and parameters are much more transparent and 

readily understandable and further, changes are easier to make. Finally, as they are 

significantly less computationally expensive to run, there is scope to perform many more 

simulations. This gives the freedom to experiment within a greater portion of uncertainty 

space, permitting exploration of conditions under which tipping point behaviour or low 

probability high impact outcomes may be realized. Thus, simple models may be regarded as a 

useful part of a toolbox for assessing likelihood. 

 

Stability of the rainforest has never before been investigated with a simple model containing 

both atmosphere and vegetation dynamics, and the novel work presented here has been 

undertaken for AMAZALERT. The soil-vegetation-atmosphere model developed here is zero 

dimensional (one grid point with one level for soil, vegetation, and atmosphere). Vegetation 

dynamics roughly follow the CASA model (http://geo.arc.nasa.gov/sge/casa/bearth.html), and 

include fire (Hirota et al. 2010). As a single point model, influence of spatially varying 

characteristics such as land use change on the surroundings cannot be studied. The inflow of 

moisture from the ocean is imposed according to season and made stochastic. The strength of 

such a model is that the sensitivity toward changes in ambient state parameters and in model 

parameters can be easily investigated, allowing feedbacks and tipping points to emerge. 

 

Experiments with this simple model reveal that moisture stress is more important than 

temperature stress, and the evolution of the soil moisture content appears to be a central 

parameter for determining the fate of the vegetation. The vegetation flourishes as long as the 

soil moisture is sufficient to maintain maximum transpiration. As it drops below this level, 

vegetation wilting and mortality becomes more important. In addition, this model uses soil 
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“wetness” as a proxy to estimate the vulnerability of the litter to fire. It is found that 

precipitation is of secondary importance, since the vegetation will not suffer as long as the 

soil moisture remains abundant. 

 

 
 

The forest appears very robust with respect to a decrease in moisture inflow from the ocean. 

This is caused by the strong moisture recycling, which can keep the average precipitation far 

above the amount of incoming moisture. Under sufficiently dry conditions, tipping points for 

the forest emerge. According to the simulations, the average lateral moisture inflow would 

have to be halved before a serious stress on the vegetation would occur (Figure 4). Such 

estimates are, however, sensitive to assumptions concerning the typical soil moisture levels 

where enhanced tree mortality (e.g. through fire) would begin.  

 

Simple sensitivity experiments have been carried out with rising temperatures and CO2 levels, 

assuming that maximum transpiration drops linearly over 100 years due to CO2-induced 

stomatal closure. This would lead to an additional decrease in the recirculation of the 

moisture, undermining the robustness of the inland forest. Unfortunately, the magnitude of 

such adverse effects is hard to estimate on the basis of current data and understanding within 

the tropics.  

 

The Amazon forest: an Earth system tipping element 

 

Evidence from the past tells us that parts of the Earth system are capable of large nonlinear 

change, sometimes on relatively short time scales (McNeall et al. 2011). Simple and complex 

model simulations described above have opened the possibility – albeit highly uncertain – of 

the Amazon forest as being a ‘tipping element’ in the Earth system (Lenton et al. 2008) that 

could transition to an alternative, non-tropical forest, state. The tipping point in question here 

is the point at which a (small) perturbation results in the collapse of the tropical forest system. 

Once the system has passed this point a central concern is whether this transition is 

irreversible. A collapse of the forest system can be regarded as irreversible if recovery times 
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Figure 4. A simple experiment showing the sensitivity of tipping point occurrence to the inflow of 

moisture from the Atlantic. For the “wet run”, the initial lateral moisture inflow is 1200 mm year
-1

 

(corresponding to about 1600 mm year
-1

 of precipitation, a bit less than current observed totals); 

For the “dry run” the inflow is 4/5 of the wet run. The inflow gradually drops by one half over 100 

years for both runs. 
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are very long (effective irreversibility), if feedbacks in the system maintain the new state, or if 

it enters into an alternative stable state. The likelihood of large impacts to natural and socio-

economic systems resulting from such a transition provides motivation for seeking early 

warning of an approaching tipping point that could trigger policy response to mitigate the 

underlying causes or the associated risk. 

 

Recent work on a number of Earth system tipping points has identified generic signals of 

tipping behaviour and indicated that early warning is possible (Lenton 2011). In applying the 

analysis to the Amazon forest in the HadCM3C model, in which the tipping point – dieback – 

occurs, it is found that the expected early warning signals are not present in tree cover, 

vegetation carbon or net primary productivity (Boulton et al. 2013). The absence of these 

signals leads the authors to propose that a more Amazon system-specific approach is required, 

and make the suggestion that the key process of fire, which is missing from most complex 

models, could be critical in creating forest/savanna alternative stable states (Aragão et al. 

2007 Staver et al. 2011). 

  

What does this mean for an assessment of likelihood? 

 

 Dieback of the Amazon forest is high impact but highly uncertain. As such it is worthy of 

likelihood assessment 

 Savanna/seasonal forest - tropical forest bistability has been proposed as possible in 

tropical South America 

 The Cox et al. (2000) HadCM3LC result was atypical in the context of other 

GCMs/DGVMs, including an ensemble of versions of the same model and the next 

generation Met Office Hadley Centre model HadGEM2-ES  

 There is still a wide range in regional climate response to global climate change in the 

CMIP5 ensemble 

 Missing or poorly-represented processes increase the uncertainty over the range 

encompassed by the CMIP5 or other ensembles 

 There remain large uncertainties in how the forest may respond to climate changes and 

greenhouse gases  

 There is the potential to narrow uncertainty in particular by constraining carbon 

residence time/mortality 

 Current simplified forest characteristics in models are likely to miss complexity in 

response. For example, species structure may change, which may add resilience to 

changing climate, but with negative effects on biodiversity (Butt et al. 2008) 

 Lags in forest response to climate change could potentially result in greater losses beyond 

the transient response  

 The difference between transient and 'committed' changes found by Huntingford et al. 

(2013) and Boulton et al. (in prep.) implies a degree of 'temporary resilience'. It could 

provide an opportunity for rapid mitigation action to reduce the likelihood of dieback, 

but depends on the time scales of forest response to climate change  

 It may be that model simulated time scales are biased due to missing mortality 

processes such as drought or fire. Temporary resilience may thus depend on the return 

period of extreme drought/fire seasons  

 It may be useful to define a level of impact (e.g. % total forest area loss) and a time 

scale for dieback, given that vegetation has the potential to keep changing after 

successful climate mitigation 

 GCMs, DGVMs, simple models and observations should all form part of a toolbox for 

assessing likelihood of dieback 
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 Observations are fundamental for developing system understanding, for monitoring, 

and are essential to model development 

 Complex modelling provides a way of representing system interactions that may not 

evolve in linear ways, and exploring potential futures 

 Simple models can isolate elements of interest and are relatively easy to modify in 

response to new information 

 It is desirable to be able to give early warning of tipping behaviour if it is early enough to 

permit action to reduce likelihood 

 Generic indicators are not promising for the Amazon, and therefore more system-

specific indicators are sought 

 

3. Modelling drivers of critical change 
 

Model investigation of forest change described above have indicated in general terms that 

moisture levels play a critical role in forest change, and highlight the importance of drought 

and dry season length on forest health. In addition to changes in climate, CO2 has an 

important direct effect on the forest and surface hydrology. So, in this section these 

environmental drivers of critical change are examined more closely, and in addition it 

introduces a crucial direct driver of change: deforestation, and how this interacts with the 

forest and regional climate. 

Effects of CO2 on the forest 

As described in the context of biome change in Section 2, CO2 has both indirect radiative and 

direct physiological effects on terrestrial ecosystems. An important greenhouse gas, it exerts 

influence over global climate change and therefore on the regional climate response. As 

outlined above, climate changes are uncertain, but warming and more especially drying tends 

to have a detrimental effect on forest productivity. However, increased atmospheric 

concentration of CO2 enhances plant productivity through fertilisation where nutrients are not 

a limiting factor. It has even been suggested that this effect may be large enough to force a 

transition of some tropical savannalands (focus on Africa) to a high biomass/woody plant 

state (Higgins and Scheiter 2012). In addition, because of greater water use efficiency, 

evapotranspiration is reduced, which may increase resilience of the forest to local drying of 

the climate. That said, as noted in Section 2, the recycling of water is a very important process 

in the Amazon basin, and a reduction in evapotranspiration may have knock-on effects on 

precipitation elsewhere in the basin. In HadCM3LC the negative effects of climate change 

began to dominate the positive effects of CO2 and dieback was the result (Betts et al. 2004).  

 

Integrated Assessment Models (IAMs) are designed to represent interactions between driving 

agents of climate change, including environmental, social and economic factors (van Vuuren 

et al. 2011b). Part of their function is to convert greenhouse gas emissions scenarios into 

scenarios of greenhouse gas concentrations that are used as input into climate models. 

However, there are uncertainties in IAMs associated with the simplified representations of the 

climate system and carbon cycle, and the climate feedback on the global carbon cycle is 

recognized as a key source of this uncertainty (van Vuuren et al. 2011b). The traditional 

approach to sampling uncertainty in the evolution of CO2 in the atmosphere and hence the 

effects on the Amazon forest has been to follow different concentration scenarios, but recent 

work has suggested that the uncertainty in the terrestrial carbon cycle feedback on the global 

carbon cycle within one emissions scenario may be greater than that described by the full 

range of SRES scenarios (Booth et al. 2012a).  
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At the regional scale, complex interactions between CO2 and Amazon vegetation are both 

insufficiently understood and potentially of critical importance. At present, the simulated 

positive effects of CO2 on Amazon productivity mitigate to some extent negative effects of 

regional climate changes (Huntingford et al. 2013). A number of researchers have identified 

the size and stability of the forest response to CO2 as a key determinant of risk of loss (e.g. 

Rammig et al. 2010, Cook et al. 2012, Cox et al. 2013). This has implications for climate 

policy and the mix of greenhouse gases (Rammig et al. 2010, Cox et al. 2013): all are not 

equal in terms of effect on vegetation. CO2 is known to have directly beneficial effects on 

plants, but the magnitude and stability of this association is not well known for the tropics and 

in conjunction with other nutrient and radiation availability. Part of the reason for the large 

uncertainty is the lack of suitable observational data. In free-air CO2 enrichment (FACE) 

experiments that have been carried out over the past couple of decades, the response of forest 

to enhanced CO2 concentrations can be measured. However, to date these have been limited 

to the extratropics in forests very different in character to the Amazon. But firm plans are now 

in place to conduct the first FACE-type experiment in the tropics, and will be set up in the 

heart of the Amazon, north of Manaus (Tollefson 2013). This will provide a tremendous 

opportunity to enhance understanding of this process. 

 

Temperature 

Temperature has influence over Net Primary Productivity (NPP) through both direct and 

indirect mechanisms. Its direct effects are on respiration and through physiological controls 

on photosynthesis while indirect effects on rates of photosynthesis occur via temperature 

control on leaf-to-air vapour pressure difference. As temperature rises, evaporative demand 

increases and stomatal conductance decreases to limit moisture loss, which also has the effect 

of reducing CO2 uptake (Lloyd and Farquhar 2008, Galbraith et al. 2010). 21
st
 century 

temperature increases over Amazonia are common to all GCM projections and when 

considered in isolation, have a negative effect on the biomass in the region (Huntingford et al. 

2013). However, close inspection of the effects of increasing temperatures on Amazon 

vegetation carbon simulated by three DGVMs reveals that while both direct and indirect 

influences contribute to a reduction in vegetation carbon, the relative importance of these 

mechanisms in each is very different (Galbraith et al. 2010). This study also argues that 

observational data is required to develop more sophisticated understanding and model 

representation of respiration sensitivity to temperature. Plants are thought to acclimate long-

term to higher temperatures (Atkin et al. 2005, Smith and Dukes 2013) and where this is not 

taken into account, it is suggested that respiration and photosynthesis in some if not all 

models is too sensitive to very hot conditions. 

 

Drought and dry season characteristics 

Severe droughts in recent years have demonstrated how hotter, drier environmental conditions 

can damage the forest and associated ecosystem services (Phillips et al. 2009, Lewis et al. 

2011, Marengo et al. 2008, 2011, Potter et al. 2011, Tomasella et al. 2013) in both the short 

term and over prolonged time periods. Observational evidence has shown that enhanced 

mortality rates (Phillips et al. 2010) or declines in canopy structure and moisture (Saatchi et 

al. 2013) can persist for years after the meteorological event has come to an end. Long-term 

throughfall exclusion experiments (Meir et al. 2009) provide a more controlled manner of 

investigating the effects of deficient moisture on the forest. In a similar way to the lags in 

mortality in observed drought events, the forest in these imposed drought conditions display 

resilience initially, followed by heightened tree mortality after a few years, with the larger 

trees worst affected (da Costa et al. 2010). In a climate regime that is marked by repeated 

strong droughts, there is the potential for longer-term alteration of forest composition and 

biodiversity (Meir et al. 2009, Butt et al. 2008). In the past few years, droughts have been 

interspersed by extreme wet conditions, and it is suggested that the net result of carbon 
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neutrality in wet years and carbon losses from reduced photosynthesis and increased fire in 

the dry years may be a move towards the Amazon as a carbon source if these extremes 

continue (Gatti et al. 2014).  

 

Drought in the Amazon is related to variations in SSTs and pressure in the surrounding 

oceans (Andreoli et al. 2012). It has long been recognized that on interannual time scales, the 

El Niño-Southern Oscillation (ENSO) phenomenon is one of the major climate modes that 

affects Amazonia, and El Niño events have been linked to rainfall deficits and resultant low 

river levels as well as enhanced fire occurrence over the observational record (e.g. Ronchail et 

al. 2002, Marengo 2004, Marengo et al. 2008a) and in palaeo records (Meggers 1994). The 

drought of 2010, although it began during an El Niño event, was also subject to the influence 

of higher than normal sea surface temperatures in the tropical North Atlantic, which have 

previously been associated with drought events that occurred during non-El Niño years such 

as 1964, 1980 and 2005 (Marengo et al. 2011, Cox et al. 2008).  

 

Moisture availability and temperature have been used to define climatic envelopes for tropical 

forest, which enables the future of the forest to be examined under future climate regimes to 

be related to tropical forest distrbution. Malhi et al. (2009) used the Maximum Climatological 

Water Deficit (MCWD) measure, based on the balance between precipitation and 

evapotranspiration, to define “rainforest”, “seasonal forest” and “savanna”, and found that 

under climate change, conditions in the eastern Amazon move become more appropriate for 

seasonal forest rather than rainforest. A later study defined a tropical forest climate envelope 

(constrained by temperature and precipitation) for tropical forest, based on the empirical 

relationship between forest cover and evapotranspiration, and used this to explore the 

maximum potential tree cover response to future climate simulated by the CMIP3 ensemble 

(Zeng et al. 2013). This work indicated a reduction in tropical forest cover according to this 

measure, particularly in the transition zones between forest and savanna. Based on these 

models, it suggested with medium confidence that the eastern Amazon could shrink by 5% or 

more under end-of-the-century climate compared to present-day (2000–2009) conditions 

(Zeng et al. 2013). 

 

Considering the precipitation regime, as well as total water supply, the strength and duration 

of the dry season are thought to be important for the long-term future of the Amazon basin 

(Malhi et al. 2009, Marengo et al. 2011). The dry season in Amazonia is normally defined as 

the number of consecutive months with maximum monthly rainfall of 100 mm (Sombroek 

2001), as below that level, evapotranspiration is assumed to exceed incoming precipitation 

and the forest is hence in water deficit (Aragão et al. 2007).  

 

In order to identify possible changes in the dry season length, Marengo et al. (2011) applied 

this definition to observed (GPCC) monthly data from 1951 to 2010. Figure 5 shows a 

Hovmoller diagram with the distribution of monthly rainfall in southern Amazonia. The 100 

mm month
-1

 isohyets are shown by the bold black line. They found that during the 1950s and 

1960s, the dry season was longer, suggesting a late demise of the dry season and possibly a 

late onset of the rainy season. In the mid 1970s, during the climate shift, the dry season was 

shorter. Since the 1990s, there has been a tendency for a late demise of the dry season. 

Moreover, during the last 5 years, the dry seasons have become longer, with early onset and 

late demises, exemplified by the conditions in 2010 (Marengo et al. 2011).  
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Previous studies have suggested that the wet season onset in the Amazon is initiated by 

increased evapotranspiration (Li and Fu 2004, Li et al. 2006) as a result of the rainforest’s 

response to a seasonal increase of solar radiation (Myneni et al. 2007), or due to changes of 

cross-equatorial atmospheric moisture transport could influence convection and thus the wet 

season onset (Marengo et al. 2001, Rao et al. 1996). These findings have additional support 

from another study (Fu et al. 2013), in which the dry-season length has been observed to 

increase over southern Amazonia since 1979, primarily owing to a delay of its ending dates, 

and is accompanied by a prolonged fire season. These changes cannot be simply linked to the 

interannual variability of the tropical Pacific and Atlantic Oceans.  

 

Recent modelling studies have been influenced by the need to examine changes more 

appropriate to the Amazon, and have also found evidence for increases in the length (Kitoh et 

al. 2011) or intensity (Cook et al. 2012) of the dry season in certain regions. As reported in 

AMAZALERT Deliverable 3.1, although there is a large spread in CMIP5 projections of 

annual rainfall, there is greater agreement for reductions in rainfall during the dry season, 

particularly in the eastern basin. There is a stronger agreement for this outcome in the CMIP5 

models than CMIP3, as well as reduced agreement for wetter conditions during the rainy 

season (Joetzjer et al. 2013). Lengthening and deepening of the dry season is found to be 

related to a northward shift of the ITCZ associated with greater north Atlantic warming and 

an El Niño-type pattern in the tropical Pacific. High uncertainty remains with respect to 

evapotranspiration and moisture convergence (Joetzjer et al. 2013) – those processes that are 

set out above as important in wet season onset. Fu et al. (2013), too, find that important 

processes controlling the length or cessation of the dry season are inadequately represented by 

the CMIP5 models and significantly underestimate variability in these characteristics. Hence 

future changes in these characteristics could also be underestimated.  

 

In some new AMAZALERT research, the modelled rainfall regime of the Amazon has been 

confronted with observations in order to try to constrain future changes. To provide an 

emerging constraint on Amazon rainfall projections, the Amazon basin-wide mean 

precipitation was examined using observations and a large ensemble of simulations from 35 

GCMs carried out in the context of the CMIP5 (Boisier et al., in prep.-1). 

 

Figure 5. Hovmoller diagram of monthly rainfall from 1951 to 2010 for southern Amazonia. Units 

are in mm month
-1

. The 100 mm month
-1

 isohyet is marked in bold and is an indicator of dry 

months, after Sombroek (2001). Source: Marengo et al. (2011) 
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The annual rainfall simulated in Amazonia by the CMIP5 GCMs shows a negative trend in 

the ensemble mean towards the end of the 21
st
 century, but embedded in a very large spread 

(Figure 6a). Qualitatively, the uncertainty in the modelled long-term precipitation changes in 

the Amazon can be attributed to different processes simulated in GCMs that operate at 

different spatial scales (Figure 6b). To look at the role of different sources of uncertainty in 

the model projections, we compare for each GCM the rainfall anomalies at the end of the 21
st
 

century, and the corresponding change in moisture flux divergence. A very close inter-model 

relationship is observed between the changes in those two variables: decreases in precipitation 

correspond to increases in divergence (Figure 6c)Figure 6, indicating a dominant role for 

atmospheric processes over land-surface ones in the control of the Amazon rainfall changes. 

The weak effects of surface processes in the long-term evolution of Amazon precipitation that 

could result from land-use changes is not surprising given the small perturbations in Amazon 

forest area prescribed in the CMIP5 simulations (Brovkin et al. 2013). 

 

A deeper examination of the flux divergence term suggests a major dynamic influence in the 

long-term evolution of Amazon precipitation (Figure 6e) over the thermodynamic component 

of this term (Figure 6d). On this basis, we attempt to build a relationship between observed 

present-day precipitation and large-scale circulation to constrain the model projections, in a 

similar approach to that adopted in a variety of climate assessment studies (e.g. Shiogama et 

al. 2011, Cox et al. 2013). This method is based on linear regression models of Amazon 

precipitation as a function of sea-level pressure of different tropical and subtropical regions, 

representing the large-scale circulation. The regression models were calibrated with 

Figure 6. (a) Annual mean precipitation anomalies (relative to 1960-1999) simulated by 36 CMIP5 

GCMs (black lines) and diagnosed using observations (red lines) on average over the Amazon 

basin. Time-series are smoothed with an 11-yr running mean filter. Box-whisker plots show the 

statistics (median, lower/upper quartiles and extremes) of the precipitation anomalies for each 

ensemble member at the end of 21st century (2060-2099). (b) Qualitative outline of uncertainty 

propagation for the long-term Amazon precipitation change simulated by climate models. (c) 

Simulated change (2060-2099 minus 1960-1999) in the annual basin-average precipitation plotted 

against the corresponding change in water vapour flux divergence (*-1) over the Amazon basin. 

Numbers indicate the results of the various GCMs assessed. (d) As in (c), but for the 

thermodynamic water vapour flux divergence component. (e) As in (c), but for the dynamic water 

vapour flux divergence component. 

 

 



AMAZALERT  D3.4 Risk of collapse 

 

 25 

observations and the method evaluated by using present-day GCM data. Finally, the 

calibrated models were driven by CMIP5 modelled sea-level pressure, 1960-2099, to derive 

constrained 'diagnostic' projections of Amazon annual precipitation (Figure 7). 

 

Compared to the direct GCM outputs (Figure 6a), the diagnostic long term Amazon 

precipitation changes show a lower spread within the individual estimations, and an 

ensemble-mean negative trend of larger amplitude. In line with observed historical 

precipitation trends and independent reports of recent changes in the South American 

Monsoon (SAM) regime (e.g. Fu et al. 2013), these results show a likely strengthening of the 

SAM seasonal cycle, with a longer and more intense dry season (Figure 7). This signature 

also supports the leading seasonal pattern of precipitation changes simulated by GCMs, 

although the ‘model democracy’ view of the latter underestimates the amplitude of the 

projected SAM changes. Yet these observation-constrained changes in the SAM remain 

moderate compared to extreme scenarios projected by some GCMs. 

 

 
 

A subject of intense interest, given its near-global reach, is whether and how ENSO 

characteristics and its teleconnections may change in the future under global warming. It has 

proved difficult to form conclusions about future ENSO frequency and intensity (Collins et al. 

2010), although a recent study has focused on the extreme El Niño events, such as in 1997/98, 

in the CMIP3 and CMIP5 ensembles plus a perturbed physics ensemble, and reports a 

doubling in the frequency of these events under global warming (Cai et al. 2014), which 

would have implications for the impacts of these events, such as drought in Amazonia. Of 

additional interest for this region is any variability or trends in the meridional gradient in the 

tropical Atlantic. An important driver of the HadCM3LC regional climate change and dieback 

Figure 7. (a) Monthly mean present-day climatology (1960-1999) of Amazon precipitation, (b) PA 

trends from 1960 to 2010 and (c) long term precipitation change (between the ends of the 20th and 

21st century). Thick lines and shading intervals indicate the ensemble mean (μ) ± 1 standard 

deviation (σ) of the corresponding metric of precipitation, based on GCM (black) or observational 

(red-dashed) data. 'Reconstructions' refer to regression models predictions in which both the input 

data used to calibrate the models and that used to force them are of the same origin (from GCMs or 

observational datasets). 'Diagnosed' refer to precipitation metrics predicted by regression models 

calibrated with observations and forced with large-scale motion indicators simulated by GCMs. 

Light grey shades in the diagnosed precipitation metrics indicate the contribution to the overall σ 

associated with uncertainty in observations.  
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was the rapid warming of the tropical north Atlantic SSTs, which have influence over the 

position of the ITCZ and moisture inflow over Amazonia. Cox et al. (2008) find that the 

inclusion of aerosols in a climate model (HadCM3LC) is essential to its ability to capture the 

observed multidecadal variability in the tropical Atlantic gradient, and that projected 

decreases in aerosol load in the future lead to enhanced warming of the northern tropical 

Atlantic relative to the south. This strengthening of the TAG is associated with more frequent 

severe, 2005-like drought in the future. Booth et al. (2012b) argue that the omission or partial 

representation of indirect aerosol effects in the previous generation of climate models has 

meant that their role in influencing Atlantic variability has been overlooked. 

 

Land use change 

Recent model intercomparison studies, such as those resulting from the LUCID (Land-Use 

and Climate, IDentification of robust impacts project) initiative, have shown very little 

climate impacts of land-use (LU) changes within the Amazon basin (Brovkin et al. 2013). The 

scenarios of LU that are used are behind the weak effects of land-cover changes simulated in 

Amazonia by the state-of-the-art GCMs (i.e. the CMIP5 generation), which are in most cases 

very optimistic and do not reflect the present-day rates of deforestation (see AMAZALERT 

deliverable D3.1). The lack of realistic land-cover forcings for the Amazon responds both to 

deficient characterizations of regional (country-level) socioeconomic processes driving 

changes in LU in large-scale land-cover datasets, and to inadequate interpretations of those 

datasets when adapted in land-surface models (de Noblet-Ducoudré et al., 2012).  

 

Under AMAZALERT, new scenarios of land use change have been developed (Aguiar et al. 

in prep.) using the LuccME modelling framework (available at 

http://www.terrame.org/luccme). These describe three contrasting scenarios of change that 

sample low to high environmental and social development futures, aligned with the IPCC 

Shared Socioeconomic Pathways (SSPs). These regional LU scenarios should be more 

appropriate to perform regional-scale analyses than the LU scenarios used in the simulations 

of CMIP5. 

 

The most severe LU scenario projected to 2050 by LuccME (Scenario C, hereafter LuccMEc) 

was used in a modelling experiment to evaluate the potential biophysical and biochemical 

impacts in Amazonia (Boisier et al. in prep.-2). A set of simulations was performed with the 

medium resolution configuration (1.25° × 2.5°) of the IPSL-CM5A GCM, following the same 

protocol used in historical simulations and future projections in CMIP5 (i.e., fully-coupled 

transient runs, including natural and anthropogenic forcings). The set of simulations (three 

ensemble runs) covers the period 1980-2050 following the pessimistic pathways both of 

fossil-fuel emission (and hence concentration of GHGs, RCP8.5) and of land-use in 

Amazonia (Table 1). The standard LU scenario used in the historical and RCP8.5 simulations 

of CMIP5, based on the land-use harmonization (LUH) dataset (Hurtt et al. 2010), was 

prescribed outside the Amazon basin. Thus, the experience done with LuccME (S2) only 

differs from the equivalent one done for CMIP5 (S1) by the land-cover prescribed in the 

Amazon basin area.  

 
Table 1. Set of IPSL-CM5A simulations used to evaluate biophysical and biochemical impacts of LU 

Sim. reference GHGs & aerosols Land cover (Amazonia) # runs 

S1 (CMIP5) 1850-2005 (HIST) 

2006-2100 (RCP 8.5) 

1850-2005 (LUH-HYDE) 

2006-2100 (LUH-MESSAGE) 

3 

S2 (AMAZALERT) 1980-2005 (HIST) 

2006-2050 (RCP 8.5) 

1980-2010 (PRODES-Killen) 

2011-2050 (LuccMEc) 

3 

 

 

http://www.terrame.org/luccme
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Figure 8 illustrates the change from 1980 to 2050 in fractional area covered by trees, as 

prescribed in IPSL-CM5A in both simulations (S1 and S2). As mentioned above, the LU 

scenario adapted in IPSL-CM5A from the LUH-MESSAGE dataset shows little deforestation 

within the Amazon area. The perturbations are also constrained to the southernmost boundary 

of the Amazon rainforest, in areas partially covered by trees (savanna-like). In contrast, the 

prescribed LU forcing based on LuccMEc shows extensive areas across the basin with 

substantial decreases in forest fraction (> 10%, absolute) and hotspots of deforestation with 

more than 50% of tree cover loss. Given the weak land-cover perturbation prescribed in S1, 

we use the differences between S2 and S1 to evaluate the effect of LU. It should be noted, 

however, that the resulting differences in a given variable between the two simulations do not 

measure the net effect of the LU described by LuccMEc, but should be a very close indicator 

of it. 

 

 
 

As a basin average, the IPSL model simulates a positive annual precipitation trend in response 

to the standard RCP8.5 forcing (Figure 9). This particular regional signature of climate 

change places this model towards one end of the CMIP5 ensemble range, the mean of which 

indicates a small trend towards drier conditions (Figure 6), and results from large 

precipitation increases (> 200 mm yr
-1

) in the north-eastern part of South America. In line 

with the changes in precipitation, the model projects basin-wide increases both in 

evapotranspiration (ET) and in surface runoff and drainage (RD), with spatially coherent 

changes in the three variables.  

 

The ‘LU-induced effect’, computed as the mean difference between S2 and S1 at the end of 

the period simulated (2035-2050), shows the effect of the new LU scenario over the standard 

forcing, and is illustrated for each component of the surface water budget on the right hand 

panels of Figure 9. Although the S2 simulations still show basin-average increases in 

precipitation, ET and RD, the relative effect of the new LU is for statistically significant 

decreases in these quantities in many areas of the basin. This finding is consistent with 

previous modelling work that suggested that large-scale deforestation could bring about 

reductions in precipitation (Sampaio et al. 2007) and also some observational evidence 

(Spracklen et al. 2012). The amplitudes of the changes are generally lower than but of the 

same order as those induced by the GHG forcing. Hence, on average across the Amazon, the 

hydrological impacts of large-scale climate change (GHGs), as simulated by the IPSL model,  

are significantly dampened by the LU effects. 

 

It is noteworthy that, in terms of water flux, the LU-induced precipitation changes are larger 

in amplitude than those of ET. This feature indicates that mechanisms other than moisture 

recycling may play a major role in controlling the Amazon precipitation response to LU, as 

Figure 8. Forest cover in 1980 (a) and changes from 1980 to 2050, as prescribed in IPSL-CM5A 

for simulations S1 (b) and S2(c). 
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has been reported in earlier model-based assessments of Amazon deforestation (see d'Almeida 

et al., 2007, and references therein). Alternatively, there could be a role for the convergence 

feedback that may amplify an effect driven by moisture recycling (Chadwick and Good 

2013). 

 

 

 
 

Some regions without – or with small – land-cover perturbations, such as in the northernmost 

part of the basin (Figure 8), show significant LU-induced changes in precipitation (Figure 9). 

Such exported impacts of LU are of particular interest regarding the natural response of 

vegetation and potential feedbacks with climate (Sampaio et al., 2007). However these 

processes are however not accounted for in the model assessed here, which does not include 

dynamic vegetation. 

 

Seasonal LU-induced precipitation anomalies are illustrated in Figure 10. The model shows 

mostly decreases in rainfall with variations from season to season roughly following the 

South American monsoon cycle (not shown). That is, larger impacts occur towards the south 

during the austral summer (DJF) and towards the north of the basin in winter (JJA). 

Statistically significant changes in precipitation are highlighted in Figure 10, as well as those 

located in areas with small changes in tree cover from 1980 to 2050 (see red marks). In most 

seasons, the robust precipitation response to LU and the exported (remote) effects occur near 

the hotspots of deforestation. A clear exception is observed in JJA, when the model simulates 

Figure 9. Amazon basin-average times-series of annual precipitation (top), evapotranspiration 

(middle) and runoff/drainage (bottom), from simulations S1 (black) and S2 (red). The ensemble 

and 5-yr moving average is indicated as thick lines. The maps illustrate, for each variable,  the 

present-day (1980-1995) climatology (centre-left), and the long term change driven by GHGs 

(centre-right) and land-use (right). Marks indicate the anomalies that are statistically significant (p 

< 0.05). 
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an extensive region north of the Amazon river with substantial precipitation decreases despite 

the very low deforestation prescribed in this area (Figure 8). Further analyses are required to 

shed light on the processes leading to these anomalies; reduced water flux advection from the 

south could be a good candidate. 

 
 

Fire and interacting drivers of change 

 

The preceding description of drought in Amazonia includes several references to enhanced 

fire occurrence during drought episodes. There is seasonality in fire occurrence in Amazonia, 

as meteorological conditions during the dry season are more favourable for fire, and therefore 

when a dry season is longer or more intense than normal, higher numbers of fires are 

detected. Although it is difficult to compare the absolute number of fires detected by satellites 

(Cardoso et al. 2005), in 2004/2005, the number of NOAA12 satellite fire detections was 

substantially higher than in the previous years 2000-2003. Also, the changes in the south 

(7°S  18°S) of the region were more intense than in the north (6°N – 7°S), consistent with 

the spatial patterns of the drought in those years (Marengo et al 2008b). 

 

Fire is a process that is currently missing from most complex models, but has the potential to 

exert considerable influence over biome distribution. Staver et al. (2011) argue that a large 

portion of the wider Amazon region could support alternative stable of forest or savanna, and 

are at risk of a switch in biome. Changes brought by encroachment of fire into forest regions 

could be perpetuated through fire-vegetation feedbacks and result in a shift to the alternative 

stable state. The incorporation of fire into complex models will be an important step in 

understanding how fire may affect land cover, and further, in coupled modelling, should 

allow the operation and investigation of feedbacks. 

 

Recent improvements made at INPE to the Brazilian Integrated Land Surface Processes 

Model (Inland, http://www.ccst.inpe.br/inland) include the implementation of a new scheme 

for estimating the impacts of fires on vegetation dynamics. The current version of the fire 

model for Inland is derived from previous work of Arora and Boer (2005) (hereafter 

AB2005), and estimates fire potential from fuel and moisture conditions, assuming random 

presence of ignition sources. The current fire modelling for Inland is concentrated on the 

simulation of fire probability and its effects as a disturbance to the vegetation dynamics. 

Presence of fuel was modelled as in AB2005, which determines that a minimum of 200 

gC m
-2

 of plant biomass is required to sustain a fire.  

 

Figure 10. Land-use induced precipitation changes in DJF, MAM, JJA and SON. Marks indicate 

the anomalies that are statistically significant (p < 0.05). Red marks highlights statistically 

significant changes over areas with small change in tree cover from 1980 to 2050 (less than 5%, 

absolute). 
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In the Inland implementation, plant biomass is considered the sum of stem and leaf biomass 

from all vegetation types over land. Flammability is also modelled as described in AB2005, 

where flammability increases exponentially as soil moisture at the root zone approaches the 

wilting point. In Inland, we calculate flammability based on the moisture at the model's first 

soil layer, where most of roots are located. Our approach to represent ignitions sources 

differed from AB2005 as we assume that lightning and other process that trigger fires are 

simply random. Final fire occurrence probability is calculated by multiplying these three 

estimates, as in AB2005.  

 

To account for fire disturbance, we propagate the fire occurrence probability estimation into 

the calculation of vegetation dynamics. That is done by assuming that the fraction of the 

vegetation affect by fires is proportional to the fire probability. As other disturbances 

considered in Inland, fires affect biomass, leaf area index (LAI), and total ecosystem 

aboveground NPP. These variables, in turn, modify the fractional cover of forest and 

herbaceous canopies. 

 

Fire occurrence in Amazonia is closely tied both to direct human action and to the climate 

(e.g. Cardoso et al. 2003, Aragão et al. 2008) and these drivers of change acting in 

combination could increase the likelihood of a high-impact outcome, even where projected 

climate changes alone are sufficient to bring this about. Forests that are subject to direct 

fragmentation or are in a more vulnerable state from changes in dry season characteristics, 

drought or previous fire occurrence, are more susceptible to further damage from fire when it 

does occur, making a shift to a different forest or vegetation type more likely (Malhi et al. 

2009). Aragão et al. (2007) found that in the drought of 2005, five times the area of forest was 

burnt through ‘leakage fires’ in the Brazilian state of Acre than directly deforested, and 

suggest that fire leakage could be a major agent of biome change in a climate regime marked 

by frequent drought. Increases in temperature projected by CMIP5 and the stronger signal for 

a longer and deeper dry season described above would increase the meteorological fire 

danger, particularly in the eastern basin. Where this enhanced fire danger intersects with 

human activity (deforestation), which is also projected to be greatest in the southern and 

eastern basin, there is greater risk of forest loss through fire (Golding and Betts 2008). 

 

From the application of Inland, we estimate that the impacts of climate change in Amazonia 

increase when effects of land use changes and fire are considered. The most important 

changes will potentially occur in the east/north-east and south of the Amazon, with an 

increase in surface temperature, and decrease in precipitation and evapotranspiration. Dry 

season length is expected to increase, and a reduction of upper-canopy biomass and increase 

in lower-canopy biomass is related to an increase of the biomass in grasses and a replacement 

of tropical forest by seasonal forest and/or savanna (Figure 11). The effects of fire and land 

use cover change and climate changes, resulting in warmer and possibly drier climates, are 

important to the future of biome distribution in Amazonia. The vulnerability of Amazon 

rainforest to more frequent and severe droughts, either through a direct effect on tree 

mortality or through an indirect effect, via increased probability of vegetation fires, is 

important to understand the potential for an Amazon forest dieback and its implications for 

the global carbon cycle and future climate (Cardoso et al. in prep., Sampaio et al. in prep.).  
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What does this mean for an assessment of likelihood? 

 

 There is large uncertainty in the transformation of emissions into atmospheric 

concentrations, which IAMS provide as the input into climate models, owing to great 

uncertainty in the terrestrial carbon cycle feedback, and has not received much attention 

to date 

 CO2 fertilization confers significant benefits on Amazon forest carbon uptake and 

increased carbon storage in the models, but this process is a key uncertainty marked by a 

lack of understanding of how this operates in tropical vegetation and in conjunction with 

other nutrient and radiation availability 

 The planned Amazon FACE experiments could reduce uncertainty 

 Poorly-represented temperature dependency of respiration, photosynthesis and turnover is 

likely to make most if not all models too sensitive to high temperatures 

 Ongoing observational work should help to develop better model representation of 

this process  

 The forest is observed to be sensitive to drought, as demonstrated by droughts such as 

2005 and 2010 as well as in imposed drought experiments  

Figure 11. Biomass anomalies (kgC m
-2

) of the upper canopy (a and b) and biomass anomalies of 

the lower canopy (c and d) for 2065-2070, as simulated by INPE’s Inland model: (a) and (c) the 

model was run under RCP4.5 greenhouse gas concentration, (b) and (d) the model was forced by the 

same configuration but also considering the effects of deforestation and forest fire. 
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 The mechanisms of response to drought appear to be different than in current models, 

which is in part due to missing processes such as direct drought- and fire-driven 

mortality.  

 The dry season may be lengthening  

 CMIP5 displays greater agreement in projections for a deepening and lengthening of 

the dry season in the future 

 This could be related to differential heating of the northern and southern hemispheres, 

with dry season rainfall negatively associated with tropical north Atlantic SSTs 

 Models appear to be inadequate to represent processes behind changes in onset of the 

wet season 

 Aerosols may play an important role in Atlantic SSTs and hence on dry season rainfall. 

The current generation of models that fully represent aerosol processes will provide more 

opportunities to investigate this further 

 It may be possible to reduce uncertainty in rainfall change using observation-based 

constrained projections 

 The results presented here support the tendency of the GCMs towards a strengthened 

Amazon dry season  

 The 'diagnostic' projections and the observed past trends indicate that the model 

democracy approach (ensemble mean) would likely underestimate the amplitude of 

the projected Amazon dry season lengthening, which may have implications for forest 

viability 

 Further analyses are needed to shed light on the spatial detail of constrained 

projections to evaluate whether the regions affected are vulnerable or not  

 Land use and climate change interaction is still poorly understood, but improved 

scenarios of land use provide the opportunity to investigate the combined effects 

 Results suggest a modification to the hydrological cycle, with significant reductions 

in both ET and precipitation in the new LU experiment relative to the standard 

 Effects of these LU-induced climate changes on the remaining land cover could be 

tested in a DGVM  

 Droughts favour the occurrence of fires in Amazonia 

 Fire is a critical process that is still missing in most complex models, in particular so-

called land-use fires that involve the combination of a climate-induced high fire risk, 

forest fragmentation and human drivers of deforestation and pasture formation. 

 Recent improvements to INPE’s Inland model include a new scheme for estimating the 

impacts of fires on vegetation dynamics 

 It estimates that the impacts of climate change in Amazonia increase when effects of 

land use changes and fire are considered  

 The most important changes will potentially occur in the east/north-east and south of 

the Amazon, with an increase in surface temperature, and decrease in precipitation 

and evapotranspiration 

 Dry season length is expected to increase as well as a reduction of upper-canopy 

biomass related to an increase of the biomass in grasses and a replacement of tropical 

forest by seasonal forest and/or savanna 

 

4. Monitoring and measuring the forest 
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Observations lie at the heart of addressing limitations in our knowledge and modelling of 

Amazon processes as well as being necessary for ongoing monitoring of forest health and 

response to policy decisions. Indicators of forest health developed from observed 

relationships that can also be modelled provide a crucial link in the investigation of the forest 

response to projected future change and in assessing the future viability of the forest. 

 

A major challenge in the region is the availability of suitable observations. Even the globally 

best directly measured variables (surface air temperature, precipitation) are generally 

relatively sparse, particularly when going back a few years, which has implications for 

process understanding and long term trends and variability. Good quality gridded datasets do 

exist for certain variables but uncertainty in ‘observations’ must be considered. Observations 

of forest properties are even more limited, and rely on programmes such as FLUXNET 

(coordination of measurements from flux tower sites, http://fluxnet.ornl.gov/), the LBA 

(Large Scale Biosphere-Atmosphere Experiment in Amazonia, 

https://daac.ornl.gov/LBA/lba.shtml) and RAINFOR (the Amazon Forest Inventory Network, 

http://www.rainfor.org/en). Improvements in understanding of forest processes, sensitivities 

and response to stressors are essential and a challenge is to maintain and extend these 

programmes, and promote long-term campaigns. As noted in Section 3, there have been 

positive developments in this area regarding the implementation of FACE-based experiments 

in Amazonia. The satellite era has brought opportunities through great improvements in the 

spatial and temporal resolution of observations over Amazonia. However, there are important 

caveats in the use of satellite data associated with the fact that products are derived as 

opposed to being directly observed quantities. Satellite products should be regarded as useful 

when the process behind their production is understood and they have been validated with 

ground-based observations to determine how they may be used. 

 

For AMAZALERT, work has been done towards addressing the requirement for meeting 

models with observations for understanding and assessing likelihood of future change. This 

work is carried out within a risk framework that is aimed at being flexible and responsive to 

changes in observational data availability, and improvements in observed and modelled 

indicators of forest health. As a prototype study it is designed to demonstrate the application 

of this methodology to critical thresholds in the Amazon region. 

 

It begins with the hypothesis that we are able to characterize an extreme event using 

meteorological and vegetation observations and use these characteristics to identify similar 

events in climate model simulations of past climate and projections of future climate.  We 

choose indicators that are available as both observed quantities in the real world and 

simulated diagnostics in models to enable a direct comparison, notwithstanding the model 

biases that might exist. Once indicators are chosen we can identify these events in the 

observational record, current and future projections and our goal ultimately would be to use 

their characteristics to inform an early warning system.  

Indicators 

Observed data and metrics chosen 

The meteorological variables chosen here as indicators are precipitation and temperature due 

to the comparative ease with which these are available as gridded observed datasets over a 

relatively long period, and the validation which is given to these variables as model 

parameters. However, drivers of extreme events are not thought to be limited to these, and 

other indicators such as radiation will also be important, and an avenue for future work. Here 

gridded monthly observations from the CRU (Climate Research Unit, University of East 

Anglia) temperature and precipitation datasets (CRU, 2014) were used for the period 1901-

2009, with horizontal resolution of 0.5° latitude/longitude (Harris et al. 2013). Others such as 

cloud cover and radiation were considered but more work needs to be done on deriving 

http://fluxnet.ornl.gov/
https://daac.ornl.gov/LBA/lba.shtml
http://www.rainfor.org/en
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comparable model diagnostics which would also require validation against observational 

datasets. 

 

As an indictor of forest health, we use NPP. NPP is defined as the difference between the 

amount of CO2 taken in by plants during photosynthesis and the amount released during 

respiration (NASA MOD17 2014a). Other indicators of vegetation health, preferable due to 

their greater availability in observed datasets (e.g. Fraction of Absorbed Photosynthetically 

Active Radiation and Leaf Area Index, Zhu et al. 2013), were not available directly as output 

from the models. However, diagnosing these indicators, from some models at least, is a future 

possibility. We look at monthly in addition to annual mean data as plants response to climate 

variability and extremes is important as well as mean changes (Reyer et al., 2013). Observed 

NPP from the NASA MODIS satellite was used for the period 2000-2012 (monthly-NASA 

MOD17 2014b; annual-NASA MOD17 2014c). Although monthly data is available, it is not 

an official NASA product, and it is recommended to be used only for trends and general 

comparisons rather than in a quantitative fashion (Kevin Ward, NASA, and Chris Jones, Met 

Office Hadley Centre, pers. comm.), and our understanding of the MODIS NPP calculation 

concludes the annual NPP is the more accurate measure (Running et al. 1999). 

 

Saleska et al. (2007) indicates that the Amazon rainforest appeared to be greener, hence 

healthier, during the 2005 drought, and suggested this may be due to increased availability of 

sunlight when water was not limited (such as for deep rooted trees). However, other studies 

showed that higher tree mortality was seen in ground observations (Phillips et al. 2009), and 

others indicated that this ‘greening’ was an irreproducible feature of an atmosphere corrupted 

version of the data (Samanta et al. 2010). More recently, Morton et al. (2014) suggests the 

‘greening’ could be a feature of how satellites image the Amazon region, and how much the 

forest changes in the dry season may be overestimated because of seasonal differences in the 

angles of satellite observation and solar radiation. To what extent the NPP MODIS data could 

be affected by this is not obvious as it is derived from several products including analysed 

model fields and ancillary data in addition to remotely sensed products. 

 

To enable us to capture the characteristics of a particular ‘extreme’ event, various metrics 

were trialled using the observed data, which would enable the 2005 drought to be identified as 

an extreme meteorological event using these indicators. Annual rainfall of the region chosen 

did not indicate 2005 as a year with particularly low amount. Here we used the lowest total 

rainfall of June, July and August, although many alternatives are used in other studies (e.g. 

(Maximum) Cumulative Water Deficit, Aragão et al. 2007, Malhi et al. 2009).  

 

Use of observations to link known event with indicators  

Results are shown from a region of the eastern Amazon, chosen as the region has been used in 

previous observational and modelling studies (e.g. Malhi et al. 2009). The 2005 drought was 

noted for severe effects in the south and west of the region which spread to the east (e.g. Chen 

et al. 2009) 

 

Monthly time series for 2001-2009 (the period covered by the monthly MODIS NPP data), 

Figure 12, illustrates how 2005 might be characterized by these indicators. Temperature 

(Figure 12a) in the first half of 2005 particularly, was high compared to the rest of the period. 

For 2005 June precipitation in this region seemed particularly reduced compared to other 

years (Figure 12b). NPP (Figure 12c, given caveats over the interpretation of the monthly 

data), indicates that 2005 was a year with lower productivity, especially in the May to 

September period. So, for the eastern Amazon region 2005 is drier, warmer, and has reduced 

productivity over other years in the first decade of the 21
st
 century. 
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Model data 

We use those CMIP5 datasets (CMIP5, 2014), provided for the IPCC AR5 report, with the 

chosen indicators available for the entire periods chosen at the time of retrieval. For the study 

described here we present findings for each model individually, and do not attempt to create 

ensemble mean statistics or regrid models to any ‘standard’ resolution. Hence results 

presented reflect absolute data from each model with only temporal accumulation or meaning, 

and spatial meaning over the chosen region. In addition we do not attempt to rank models as 

being more or less realistic than others, as determined by accuracy of representation of 

historical climate or any other method.  

 

Figure 13 shows the annual cycle for CMIP5 models covering the same ‘baseline’ historical 

period for the eastern Amazon region as the observations in Figure 12. The ‘dry year’ is 2005 

for the observations and the driest year from 2001-2009 for models. ‘Other years’ shows the 

multi-year mean monthly values from the rest of the years in that range. For precipitation, 

most models reproduce the annual cycle but tend to be drier than observations, particularly in 

the rainy season. Observations show a steeper transition from wet to dry, between April and 

June, in the drought year, 2005.  

Figure 12. Seasonal cycle of observed indicators in the eastern Amazon region for individual years 

in the first decade of the  21
st
 century a) CRU temperature b) CRU precipitation c) MODIS NPP 
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For temperature, the seasonal cycle is captured in the models, although with increased 

amplitude. We note that the ‘dry year’ cycle may be expected to be less smooth, as the ‘other 

years’ cycles are mean values. The dry year is slightly warmer, especially at the beginning of 

year. For NPP, the monthly averages from observations fall within the wide spread shown by 

the models, and the dry year, 2005, coincided with reduced NPP over the region. However, 

the clear seasonal cycles seen in the models for this period are not evident in the observations.  

 

 
 

The monthly NPP is more difficult to compare as the NASA MODIS values are indicative of 

trend rather than absolute value, but we can see a reduction in a ‘dry year’ is not so marked in 

model fields. It is possible that temperature differences are not as important a driver as 

precipitation for NPP (see e.g. Figure 1 of Schloss et al. 1999). As these observations do not 

show 2005 as substantially warmer than other years in this region, hence we assume 

temperature is not a primary driver of the reduced NPP in this year and region. However, this 

does not mean that thresholds do not exist in the temperature climate regime (e.g. Cowling et 

al. 2006). 
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Figure 13. Seasonal cycle of indicators for individual models and observations (bold black 

line). Note that there are more models represented here than in the subsequent analysis, as 

only nine years’ of data were needed. 
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Observed events 

Relationship between observed events and forest health/climate indicators 

With the JJA total precipitation metric, a minimum, although by a small margin, is seen in 

2005 (Figure 14, blue line). The annual and JJA total NPP derived from the monthly values 

also show a minimum (green circles and crosses respectively). The annual MODIS NPP 

values are also shown on Figure 14 (green squares) and, as expected, show a discrepancy 

from the annual values derived from monthly data, but the minima in 2005 is still clear. 

Hence we choose to use the occurrence of the 2005 level JJA precipitation as a threshold to 

identify where an event of the severity of 2005 might have occurred in the historical period in 

observations and models, with evidence that it was an event where forest health was affected 

(e.g. Phillips et al. 2009). Although we do not have historical observations of NPP for the 

entire twentieth century, we look at the relationship between the vegetation indicator (as 

proxy of forest health) and meteorological indicators in the historical model period, although 

with no particular causal mechanism identified. 

 

 

Application of 2005 threshold value 

The 2005 value of JJA precipitation (214 mm/JJA) occurs at the 16th percentile in the 1901-

2000 observed dataset (time series shown in Figure 15a). For this dataset, it means that values 

lower than the 2005 value were observed 16 times in the 1901-2000 period. To apply the 

same value as a threshold to each model, they would first need to be bias corrected, as their 

absolute values are, to varying degrees, biased from observed. Time series of absolute values 

from the historical period clearly show differences between models and observations (Figure 

15b).  

 

Figure 14. Precipitation (mm/JJA, blue) and NPP (gC m
-2

 annual (green dots) and JJA total (green 

crosses)) derived from monthly NASA MODIS and NPP (gC m
-2

 annual, green squares) from 

annual NASA MODIS data.  
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There are many methods used for bias correction (e.g. Hawkins et al. 2012); one often 

implemented method is to use only the ‘delta’, that is the change in future from historical data 

seen in individual models or to use a change factor which also accounts for any difference in 

variance.  

 

Here, as a first step we take the equivalently ranked value from each modelled distribution of 

JJA precipitation and use that as our modelled ‘observed 2005 equivalent’ threshold. In this 

way we do not bias correct the model data, although further work exploring this would be 

instructive. It should be noted that as the series is non-stationary the occurrences at or below a 

particular threshold may be more or less frequent at the end of the period to the beginning. 

That is not explored further here, but it has been demonstrated that NPP in the Amazon region 

has increased in the last two decades of the 20
th
 century (Nemani et al. 2003).  

 

Figure 15. a) Time series of observed total JJA precipitation over the 20
th

 century b) Time series of 

total JJA precipitation for the 20
th

 century for observations and CMIP5 models 
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Modelled events 

Indicator thresholds in CMIP5 20
th

 century historical runs and 21
st
 century projections - 

precipitation  

The distributions of JJA precipitation for observations and individual models for the historical 

period (Figure 16, black lines) were first compared using a Kolmogorov-Smirnov test to 

estimate the probability that two samples have the same distribution (removing the mean 

value and normalising by the variance). Three models (indicated with italics in Table 2) failed 

the 5% significance level, but are included here for completeness. The future model 

distributions are shown (Figure 16, red lines) and for most, but not all, models indicate a shift 

to drier conditions. 

 

 

 
 

Having obtained a threshold value for each model (indicated in Table 2, column 2), then the 

occurrence of events which exceeded (that is, with amounts of precipitation which fell below) 

this threshold was determined in future model projections (column 3). We use this to see if 

there is any change, in future projections, in the frequency of occurrence of events below the 

threshold. For this indicator, in all but three models, the number of times the threshold was 

equalled or lower values occurred increased. 

Figure 16. Distributions of JJA precipitation (mm) for observations and all models for baseline 

(black) and future (red – model data only) 
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Table 2. Absolute values of ‘16th percentile’ JJA total precipitation and the exceedance of that 

threshold value in future for models (italics indicate those models which when compared to the 

observed distribution, failed the Kolmogorov-Smirnov test) 

Data source 
Absolute value of ‘16th percentile’ total 

JJA precipitation (mm/JJA) in baseline 

No. of times this threshold 

Reached or exceeded in future 

Observations *214.7 No data 

bcc-csm1-1 92.4        22               

bcc-csm1-1-m 178.4        38             

BNU-ESM 109.2        33                  

GISS-E2-H-CC 311.1         9             

GISS-E2-R 244.1        41 

HadGEM2-CC 284.3        40 

HadGEM2-ES 299.1        48 

IPSL-CM5A-LR 41.9         3 

IPSL-CM5A-MR 43.0         0 

IPSL-CM5B-LR 128.2        33 

MIROC-ESM 78.2        71 

MIROC-ESM-CHEM 74.4        53 

MPI-ESM-LR 21.1        30 

MPI-ESM-MR 21.4        30 

NorESM1-M 203.9        43 

* 2005 value 

Indicator thresholds in CMIP5 20
th

 century historical runs and 21
st
 century projections - 

NPP 

As described above, there is evidence that both annual and JJA total NPP is correlated to JJA 

precipitation, that JJA NPP is low when JJA precipitation is low, as exemplified in the 

drought of 2005. As there is no long gridded observed record of NPP for the twentieth 

century, the same ranking of events to detect a threshold performed for the JJA precipitation 

climate indicator cannot be done for a NPP vegetation indicator. Instead, we looked at model 

NPP for the historical period, and found the total JJA NPP for the model year of the threshold 

16
th
 percentile JJA precipitation. This was done for each model and taken as the historical 

threshold JJA NPP value; hence we were able to calculate how the threshold exceedance of 

this value changed in future.  

 

Distributions of NPP values for each model are shown in Figure 17 for the historical period 

(black) and future (red). There is a good deal of variation in changes in the distributions – 

some (such as BNU-ESM) show little change, while others show a shift to lower (e.g. bcc-

csm1-1) or higher (e.g. IPSL-CM5A-LR) values. This is reflected in the changes in number of 

times values do not reach the threshold. Table 3 gives number of times NPP is lower than the 

threshold value in the historical and future period, and indicates no consistent trend across 

models. 
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Table 3. Threshold exceedance for JJA NPP at year of ‘2005 equivalent’ in each model  

Data source 

NPP threshold: absolute value 

of NPP (gC m-2 for JJA) for 

year of JJA precipitation 

threshold value 

No. of times this 

threshold reached or 

exceeded in historical 

period 

No. of times this 

threshold reached or 

exceeded in future 

period 

Observations *172.2 No data No data 

bcc-csm1-1  -1.6  9 20 

bcc-csm1-1-m  67.5  8 21 

BNU-ESM 100.1 20 35 

GISS-E2-H-CC  -1.0 42  7 

GISS-E2-R -30.0 51 41 

HadGEM2-CC 263.0  8  9 

HadGEM2-ES 343.1 34 27 

IPSL-CM5A-LR 240.7 60  2 

IPSL-CM5A-MR 237.3 67  2 

IPSL-CM5B-LR  87.6 31 18 

MIROC-ESM 157.4 73 79 

MIROC-ESM-CHEM 159.3 71 77 

MPI-ESM-LR 216.5  8  5 

MPI-ESM-MR 242.5  8  2 

NorESM1-M 225.8 46 10 

* 2005 value from monthly NASA MODIS data, which is likely to be an over-estimate 

 

 

The lack of a consistent signal could be indicative of many issues. It could point to the 

indicator needing refinement – it could be that the JJA precipitation metric is not adequate in 

capturing characteristics of an extreme drought event in this region. Alternative metrics could 

be examined to determine if another better represents how NPP responds to periods of 

drought. It has been shown that there are other drivers such as radiation which are important 

Figure 17. Distribution of historical (black) and future (red) JJA NPP (gC m
-2

) for individual 

models 
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(Running et al. 2004) and so the correlation between precipitation and NPP may not be as 

straightforward as assumed here. In models, the parameterization of NPP in each model is 

likely to differ, and an investigation into what parameterization schemes are used in each is 

needed to interpret projected future changes. There are also known deficiencies in modelled 

vegetation schemes. For instance Smith and Dukes (2013) highlight 'missing' processes in 

carbon exchange responses in plants such as the way individual plants 'acclimate' to new 

climate regimes.  

 

Observed and modelled indicators of change 

This work employs a risk framework to  Under a risk framework methodology, information 

contained within observed extreme events, known to put stress upon the forest, is utilized to 

try to identify thresholds in regional meteorological and vegetation indicators. These are then 

used to identify similar events in both observed data and modelled historical/future 

projections. 

 

In this prototype study, the 2005 drought is taken as an event with severe impacts on the 

forest. Using this, we identified initial indicators of forest health (NPP) and associated climate 

regime (here, temperature and precipitation) for a region in the Amazon. We have begun to 

develop means to assess where thresholds and transitions in these indicators may exist, 

thresholds which are particularly associated with the health of the forest vegetation. In this 

study, there is not a consistent shift in NPP threshold in all models under climate change – 

this could be due to one or a combination of several factors.  

 

However, this work is intended to provide a framework that can be updated with improved 

indicators. Future work includes consideration of alternative precipitation metrics such as 

cumulative water deficit (Aragão et al. 2007, Malhi et al. 2009), and bias correction to the 

model fields (Hawkins et al. 2012). Ongoing work, including that within AMAZALERT, will 

help to inform better vegetation indicators and possibilities exist to derive diagnostics 

equivalent to observed fields from model data available. The important point is to formulate 

indicators that can be represented within models as well as in observations. This approach 

also provides a test case for determining what kind of information we can get from the models 

about how the forest responds to an event, such as a drought, corresponding to a measureable, 

stressful, real-world episode.  

 

A future goal is for thresholds such as these, together with other indicators, to be utilized 

within a multi-hazard framework to develop early warning systems relating climate variability 

and change to changes in forest health in the region. By relating model projections of change 

in indicators to quantities that are observable, it is more likely to motivate action. 

 

What does this mean for an assessment of likelihood? 

 Indicators of forest health developed from observed relationships that can also be 

modelled provide a crucial link in the investigation of the forest response to projected 

future change and in assessing the future viability of the forest 

 This framework is flexible to allow implementation of improved indicators. An essential 

part of this work lies in gaining more in-depth knowledge of observational products, how 

these relate to forest health, and then understanding how to obtain or develop comparable 

indicators in the models  

 Developing suitable indicators allows an assessment of position with respect to a more 

vulnerable state, which would form part of an early warning system, and the monitoring 

and modelling of response to policy decisions 
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5. Subjective probability of Amazon collapse 
 

An expert elicitation was carried out to estimate the likelihood of critical change in the 

Amazon consistent with current scientific knowledge. The aim was to provide an alternative 

view on likelihood combining different sources of information from the literature. This was 

done because Amazonian critical change may involve processes that are not all captured by or 

are biased in current GCMs (e.g. fire, drought mortality), and have no analogue in historical 

change. An elicitation from a range of experts helps provide a balanced view of current 

knowledge. Such an assessment involves subjective choices, because of the various 

assumptions underlying each scientific study. This is especially true for the case of critical 

changes (such as in the Amazon).  Critical change may involve processes that are not all 

captured by current GCMs, or indeed relevant to historical change. An elicitation from a 

range of experts helps provide a balanced view of current knowledge. 

 

The Amazon part of the elicitation questionnaire designed by Kriegler et al. (2009, survey 

originally performed in 2006) was repeated. The exact text as created by Kriegler et al. was 

used, to allow comparability between the two studies. A range of experts agreed to take part 

from AMAZALERT and the wider community, some of whom participated in the original 

Kriegler study. 

 

The elicitation asks experts to give feedback in terms of imprecise probabilities. This 

recognizes that the probability of critical change consistent with current knowledge is not 

known precisely. The meaning of imprecise probability intervals is explained in the 

questionnaire in terms of betting odds: 

 

"Assume you have stated that the probability of Amazon dieback for a given 

temperature scenario lies somewhere between a lower bound of 0.2 and an upper 

bound of 0.6. Your statement about the lower probability means that you are 

committed to buy a bet paying you $1 if dieback occurs and nothing if it remains 

intact for any price below 20 cent (supremum buying price). Your statement about the 

upper probability means that you are committed to issue such a bet if someone is 

willing to pay you more than 60 cent (infimum selling price). This price range reflects 

the interval of probability values that are plausible within the limits of your 

ambiguity about your belief." (Kriegler et al. 2009) 

 

Consistent with the original study, participants were told that Amazon rainforest dieback 

referred to a greater than 50% loss of the area of forest that currently exists and that they 

should assume land use changes would account for no more than 20% loss over the time. This 

meant that they were providing information on their beliefs that at least 30% of the Amazon 

rainforest would be lost due to changes in climate only. Probabilities were requested for each 

of three future 'corridors' of global warming, shown in Figure 18. 

 

The results are shown in Figure 18a-c), along with the results of Kriegler et al. in Figure 

18d-f). The experts gave a range of different answers, emphasising the difficulty in 

quantifying probability. However, some broad themes emerge. 
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First, the probability of Amazon critical change was not generally viewed as very low. Even 

under the medium temperature corridor, most experts believe the probability of critical 

change is greater than about 5%. For the high temperature corridor this figure rises to about 

20%. This is broadly consistent with the original Kriegler study. 

 

However, significant value is seen in mitigation of climate change. Mean estimated 

probabilities are around 3 times lower for the low temperature corridor than for the high 

temperature corridor. 

 

Comparing our results with the original Kriegler study suggests a small decrease in mean 

estimated probability. Indeed 6 of 11 experts who expressed an opinion believed that the 

probability was lower than that understood in 2006, with 5 choosing 'no change'. The 

Huntingford et al. (2013) study was highlighted as one of the reasons for this change. 

 

Overall, however, the difference between our study and that of Kriegler is relatively small: 

the key messages identified above apply to both studies. 

 

What does this mean for an assessment of likelihood? 

 Caution is required in interpreting these results. Dieback probability is highly uncertain 

and involves many subjective choices. They are just one method of summarising our 

current (lack of) understanding of this system 

 Reported probabilities are generally higher than might be directly inferred from some 

GCM-based analyses (e.g. Huntingford et al. 2013, Malhi et al. 2009).  

 This is consistent with the idea that the full uncertainty is inflated e.g. by missing 

processes such as deforestation and the response of fire to climate change. 

 Also, the elicitation considers a longer time horizon than in most GCM studies 

 The voluntary participation of experts could potentially self-select towards those who 

have greater concern over the future of the forest and therefore introduce bias in the 

results (which is also acknowledged in Kriegler et al. 2009). 

Figure 18. Results from expert elicitation on probability of Amazon rainforest dieback. Experts 

were asked for their views on the lower and upper probability bounds of dieback under (a) low, (b) 

middle and (c) high future warming scenarios. These results are compared to those found by 

Kriegler et al. (2009) when the elicitation was originally carried out in 2006 (d-f). Experts 

participating in both elicitations are shown in red in (a-c) 

a) c) b) 

d) e) f) 
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6. Final remarks and recommendations 
 

In making an assessment of likelihood, it is necessary to bring together many layers of 

information. Each layer may be of a different type, and associated with different levels of 

uncertainty. Quantitative likelihood assessment is thus not possible given the varied nature of 

the available information. In this report, model results have been put in perspective via semi-

quantitative and qualitative assessments of the possible effects of missing processes, other 

uncertainties or potential biases in the above models. This includes understanding of key 

processes as observed, and whether they might be reliably simulated. This work contributes to 

AMAZALERT objectives of improving the understanding and modelling of complex 

interactions, which includes understanding how these are modelled and where improvements 

should be made. In addition, it provides important background material towards the 

overriding AMAZALERT aim to develop a blueprint for an early warning system, in terms of 

our current levels of knowledge and the need to build flexibility into such a blueprint to 

enable future system understanding to be assimilated. 

 

With more models and increased modelling capability, it has now become possible to 

determine how representative the early dieback result was of other model projections. The 

new data describe a range of uncertainty in projections of change and hence permit an 

assessment of probability, albeit in a qualitative manner. 

 

In the context of climate-vegetation modelling, it has emerged that the large regional drying 

and warming behind the dieback reported in Cox et al. (2000, 2004) is not typical of current 

models.  Huntingford et al. (2013) forced a single land-surface model by climate patterns 

from 22 GCMs. They find that of the 22 climate patterns, only one (from HadCM3) causes 

committed – or potential – ‘major biome loss’. This is consistent with probability somewhere 

between 0 and 15% (95% confidence interval assuming models are independent and equally 

likely; the range is a result of the small sample of models). The changes seen in the Cox et al. 

(2000) study are atypical even of an ensemble of different versions of the same model. As 

reported here, around 30% of that ensemble shows committed ‘dieback’ (at least 25% forest 

loss) under the high (RCP8.5) emissions scenario. The probability of climate-driven dieback 

by the end of the century is systematically lower than the probability of committed loss. 

 

Thus, results from current climate-vegetation models, taken at face value, imply that the 

probability of climate-driven dieback occurring by the end of the century is significantly less 

than the probability of it not occurring. However, missing processes and biases (known and 

potential) in these models are such that dieback is much harder to rule out than implied by 

these models alone. There are key uncertain processes, such as fire, CO2 fertilization and 

regional rainfall dynamics, which could lead to substantial changes in model projections in 

the future. Thus the probability of dieback is contentious, as illustrated by the range of 

assessments from the expert elicitation, but should not be regarded as very low. Further, the 

interactions between climate variability and change and land use change, particularly through 

fire, are likely to increase the probability of biome change, especially in regions such as the 

south and east of Amazonia that are already particularly vulnerable to these drivers of change.  

 

Some themes have come across strongly when drawing together the body of research 

presented here. One of these is the range of uncertainty that stretches right from the emissions 

pathway to the response of the forest to drivers of change. Another is the constant and great 

need for more observations and for these to be brought together with modelling work. This 

will enable growth in understanding and in representation of key processes for the Amazon 

and should lead to a reduction in some elements of uncertainty described in this report. 

Defining better indicators of forest health is a goal in itself as well as working towards 

developing comparable indicators in models, which would provide an important tool for both 

monitoring the forest and modelling its future viability. A third theme is the necessity to 
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recognize and much better understand the complexity of the Amazon system, and the multiple 

and interacting drivers of change that are acting on the region that may combine to have much 

greater impacts than any one element acting alone.  
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